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Abstract 

We examine market microstructure invariance relationships in FTSE 100 index constituent stocks. 

We formulate a generalised version of the invariance model to account for the impact of 

intermediation and order flow imbalances on returns variance. Our results provide qualified support 

for microstructure invariance, indicating that trade counts are proportional to trading activity (to the 

power of 0.5), when observations are averaged across days. Invariance relationships receive more 

support among stocks with high average volatility. However, notions of trading activity that imply a 

proportionality between trading volume and returns variance are more precise when estimating 

certain invariance relationships, especially so for equities with low average volatility. Excluding time 

intervals with extreme volatility reveals a correlation between the number of trades and returns 

variance.  
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1. Introduction 

Market microstructure invariance maintains that each capital market has a distinct business time1 

scale in which it operates and during which risk transfers occur. Market microstructure invariance 

investigates the relationship between what Kyle and Obizhaeva (2016) define as bets (asset-specific 

risk transfers with small or no correlation with market risk as customarily defined) and business time 

rather than exploring the relationship between trading volume and business time. In this context, 

Kyle and Obizhaeva (2016) specify trading activity as the product of trading volume (in local 

currency units) and return volatility in business time and research its effect on different market 

microstructure characteristics. Intuitively, market microstructure invariance hypothesises that market 

microstructure characteristics, such as order size, order arrival rate, price impact, bid-ask spreads and 

price resilience remain approximately constant when estimated in business time. In a recent paper, 

Andersen et al. (2015) extend this theory by studying whether similar invariance principles, which 

they name intraday trading invariance, apply to trades.  

We extend  the analysis of Kyle and Obizhaeva (2016) on market microstructure invariance together 

with that of Andersen et al. (2015) on intraday trading invariance and investigate its validity in a 

novel equity market context, specifically FTSE 100 stocks traded on the London Stock Exchange 

(LSE). Our contribution is threefold: First, we amend the market microstructure invariance model 

specification for bets to facilitate its empirical application in different market settings.  Specifically, 

our proposed modification not only accommodates the effect of intermediation and order flow 

imbalances on returns variance, but it is also required in order to empirically implement the specific 

way in which our transaction dataset records executed trades. We utilise the modified model  to test 

for an invariance relationship between the number of trades and trading activity following Andersen  

et al. (2016). We compare our findings using the Kyle and Obizhaeva (2016)  invariance specification 

of trading activity to two well-known alternatives in the literature implied by  Clark (1973) and Ané 

                                                           
1
 Business time is also referred to as operational time, economic time or information time The concept of using 

alternative time references to calendar time when estimating trading activity is a salient feature of the market 

microstructure literature. According to Hasbrouck (1999), a fundamental aspect of such “time deformation” invokes a 

differentiation between business time, in which a particular system develops and calendar time in which someone 

observes it. Empirical papers employ data, aggregated for short real time spans that incorporate shifting intervals of 

business time. The estimated returns over these periods are expected to follow combinations of business time 

distributions. Bochner, S. (1955) proposes that time deformation can be specified in terms of subordinated stochastic 

processes, whereas Clark, P. K. (1973) and Tauchen, G. E. & Pitts, M. (1983)  imply that the relationship between 

business and calendar time is normally expressed as a function of latent or observed variables. 
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and Geman (2000), respectively. Second, we allow for a more general invariance relationship between 

the number of trades and trading activity by relaxing the assumption of a monopolistic market 

maker. This enables us to accommodate different institutional market arrangements and crucially 

methods of reporting transaction data into consideration. The stipulated theoretical 2/3 

proportionality between the number of bets and trading activity proposed by Kyle and Obizhaeva 

(2013) and the empirical 2/3 proportionality between number of trades and trading activity as 

formulated in Andersen  et al. (2016), are implied by our specification in the market environments 

they analyse. Finally, we conduct one of the first tests of intraday trading invariance for equity 

markets using a subset of 25 equities from the FTSE 100 stocks trading on the LSE.  

In this regard, it is important to note the difference in the nature of our data and that in Andersen et 

al. (2015). Our analysis uses tick data, recording any large, liquidity demanding trades executed 

against multiple passive limit orders as separate trades. In contrast, Andersen et al.’s (2015) data only 

captures that part of the marketable order which is executed at the best bid or ask price, recording it 

as a single trade. Thus, our data biases are quite different: Andersen et al. (2015) may not capture the 

full executed order, as they record only trades transacted at the best bid and ask price, but the data 

does not suffer from order splitting. As our data can split a single marketable order, we may 

experience enhanced intermediation, an inflated number of trades and lower trade sizes. We 

accommodate these intermediation and data recording differences in the proposed extension of the 

theoretical invariance model. 

Our principal empirical findings are as follows. Corroborating invariance, the number of trades is 

indeed proportional to trading activity.  However, rather than the 2/3 proportionality documented in 

Andersen  et al. (2016), we find proportionality  to the power of 1/2 for the majority of  stocks. 

Based on the extended model we propose, this suggests  that an order is intermediated an average of 

2 to 2.56  before it is fully executed, with the percentage of returns variance attributable  to order 

flow imbalances ranging between 75% and 100%, respectively. As the arrival rate of trades measures 

market velocity, this intuitively means that the FTSE 100 stock market is approximately 50% slower 

in business time compared to the E-min S&P 100 future contracts market, the subject of analysis in 

Andersen et al. (2015).  

The second principal finding is that this proportionality holds somewhat better when the notion of 

trading activity introduced by Clark (1973) is used, though the invariance model is more precise for 

stocks with high average volatility. This suggests a proportionality between returns variance and 
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trading volume, consistent with Clark (1973), Epps and Epps (1976), Tauchen and Pitts (1983) and 

other papers on “mixture” of distributions hypothesis. Also, it shows that the correlation between 

trading volume and returns variance for most stocks is higher than that between trade size and 

returns variances and that between trade size and number of trades. When minutes with extreme 

volatility are excluded, invariance model becomes less accurate, while returns variance appears to be 

proportional to number of trades (i.e. when the notion of trading activity by Ané and Geman (2000) 

is employed). The model of Clark (1973) still yields significant results. This highlights that market 

participant’s change trading behaviour based on the innovations in returns variance upon arrival of 

new information and that the correlations between the underlying variables are altered. 

We make an important contribution to the literature about which distribution family best describes 

variations in returns and their relationship with other variables of trading activity, mainly trading 

volume (either measured in trade counts or number of securities traded). Some papers argue that 

price changes follow a Pareto-type distribution in calendar time and different distribution in business 

time, when the latter is measured in volume terms. Mandelbrot and Taylor (1967),  Plerou et al. 

(2000) and Bouchaud et al. (2008) are representatives of this category. Other papers allow real time 

intervals of their sample to incorporate intervals of informational time and support that returns over 

those intervals follow a mixture of informational-time distributions. Clark (1973), Epps and Epps 

(1976), Tauchen and Pitts (1983), Gallant et al. (1992)  and Andersen (1996) support this “mixture” 

of distributions hypothesis (MDH), defined as the joint hypothesis between returns and volume. 

Karpoff (1987) provides an excellent survey of empirical and theoretical papers concerned with the 

relationship between trading volume and price movements till that date. In contrast, Jones et al. 

(1994), Ané and Geman (2000), Dufour and Engle (2000) assert that that number of trades and not 

trading volume is a better proxy for business time, due to their connection with price volatility.2 

The notion of invariance in finance and economics is not a recent innovation. The implicit use of 

invariance principles dates back to 1950s and the irrelevance of capital structure proposition in 

Modigliani and Miller (1958). In mathematics and theoretical physics invariance is a property of a 

system that does not change when transformed under a valid condition. The speed of light (Einstein, 

                                                           
2 All these papers treat trading volume or number of trades as proxies for the business time clock, but they do not 

examine them simultaneously with price changes in the context of business time. The introduction of market 

microstructure invariance by Kyle and Obizhaeva (2013) attempts to switch the insights of the time deformation 

literature and solve this problem. 
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1905; Einstein, 1920) and the area of a defined shape that does not vary relative to Euclidean plane 

isometries which remains constant are established invariant characteristics (Hunt, 1996).  

The paper proceeds as follows. Section 2 reviews related literature. Section 3 explains the generalised 

theoretical invariance model. Section 4 focuses on the methodology and the main and alternative 

empirical hypotheses. Section 5 highlights the characteristics and descriptive statistics of the dataset 

used in this paper. Section 6 presents and discusses the empirical results. Section 7 concludes. 

2. Relevant Literature 

2.1 Time deformation literature  

Time deformation literature begins with the intuition that execution of individual trades leads to 

microscopic, normally and independently distributed, price fluctuations that are incremental to daily 

price changes. More specifically, every time new information becomes available, the variables of 

trading activity (e.g. number of trades, volume, transaction rate3 , quote revision frequency) and 

consequently prices shift. Engle (2000) explains that the arrival rate of information represents the 

speed at which business/economic time passes and that a blunt measure of this rate is obtained 

when transaction times and prices are analysed simultaneously. Intuitively, given that price changes 

follow high-kurtosis distributions4,  the observed fat tails can be interpreted from the perspective of a 

business clock that ticks at different velocities compared to real “wall-clock” time to allow for 

differentiation of  trade execution speed across defined time periods (Kyle and Obizhaeva, 2010). 

a) Measuring time deformation: Pareto distributions 

Mandelbrot and Taylor (1967) are the first to examine the distribution of stock price changes (i.e. 

price volatility) by measuring time in volume of transactions. They argue that price changes have 

stable Pareto (power-law) distribution during defined calendar time intervals and Gaussian 

distribution, when these fixed intervals are measured in transactions time5. Similar to Mandelbrot and 

Taylor (1967), Gopikrishnan et al. (1998) analyse the probability distribution of stock price 

                                                           
3 Time between trades is defined as the reciprocal of transaction rate 
4 Distributions with sharper peak around mean and fatter tails compared to normal distribution 
5 Mandelbrot and Taylor (1967) reach this conclusion by introducing for the first time the concept of  subordination (i.e. 

time change stochastic process inside another stochastic process)  when modelling financial returns 
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movements and deduce that they display asymptotic Pareto distribution with an exponent close to 3. 

Moving one step forward, Plerou et al. (2000) maintain that price fluctuations follow a complicated 

diffusion process in which the diffusion constant is related to the number of transactions for a 

specific time interval and the variance of price fluctuations for all transactions. The number of 

transactions and variance of price fluctuations between consecutive trades follow a power law 

distribution with a mean value of the exponent around 3. Provided that there is market impact is 

linear in trade size6 and trades are i.i.d., the authors suggest that the Pareto distribution tails of price 

movements are attributed only to variance, whereas the number of transactions is responsible for the 

long-range correlations of volatility.  

Alternatively, Gabaix et al. (2006) identify a dependence of empirical price changes on square-root 

price impact of i.i.d. trades based on a specified version of a model introduced by Torre and Ferrari 

(1998) 7 . They state  that the estimation of price impact and its connection to order size is 

problematic due to the joint endogeneity of order flow and returns8. Bouchaud et al. (2008) adopt the 

Pareto distribution of price movements, but they propose an original model to explain how changes 

in supply and demand affect prices. They underline that order flow is a “highly persistent long-memory 

process9” and assert that the informativeness of prices stems more from supply and demand than 

external news. Intuitively, this suggests that any price revision must strongly rely upon the past 

history of order flow so that the market remains efficient.  

a) Mixture of distribution Hypothesis 

Other business time papers differentiate from the Pareto distribution approach. Those papers 

investigate the “mixture” of distributions hypothesis (MDH) as the joint hypothesis between returns 

and volume. The theory introduces an explicit way to model the impact of information on prices and 

volume by expressing the respective variables as a function of the arrival rate of information to the 

market. Clark (1973) suggests that the number of minor price innovations per day exhibits a log-

normal distribution and that both volume and price innovations are triggered by the same 

                                                           
6 Prices move upward or downward proportionally to the trade size 
7 Zhang (1999) and Gabaix et al.(2003) also propose a model with square-root price impact.  
8 Loeb (1983) allows for the exogeneity of order flow by using bids on various size blocks of stock. Both Torre (1997) 

and Grinold and Kahn (1999) mention square root price impact fits best this type of data.  
9 Autocorrelation in order flow decays very slowly 
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information arrival process 10 . Assuming identical distribution of distinctive price increments, he 

argues that return variance is proportional to trading volume when using the latter as an approximate 

transactions time clock. Both, Epps and Epps (1976) and Westerfield (1977) confirm this 

proportionality, though they underline that the theory of stable Paretian distributions proposed by 

Mandelbrot and Taylor (1967) cannot be ruled out. 

Tauchen and Pitts (1983) add that the positive relation between returns variance and trading volume 

is subject to a fixed number of traders11, while Harris (1987) maintain that prices and volume unfold 

at homogenous rates in business time 12 . Gallant et al. (1992), using a non-semiparametric 

specification, report a positive relationship between volatility and volume, both conditional on their 

past observations. Richardson and Smith (1994), introduce a direct test for the MDH and examine 

different distributional properties for the rate of information flow. They conclude that the bivariate 

distribution of price changes and volume is not as strong as previous studies suggest and that the 

distributional properties of the information flow rate approach those of log-normal distribution. 

Andersen (1996) incorporates the market microstructure setting of Glosten and Milgrom (1985) in 

the MDH  arguing that the full dynamic representation of the stochastic volatility process for the rate 

at which information arrives in the market performs better compared to the standard one. Bollerslev 

and Jubinski (1999), investigate the implication of the MDH in terms of the long-memory 

characteristics of the rate of external news and find that the information arrival processes exhibit a 

sluggish hyperbolic rate of decay. Finally, Liesenfeld (2001) generalises the MDH standard model by 

allowing both the number of information arrivals and the sensitivity to new information to be 

dynamic over time. The revised model more accurately explains stock price fluctuations, whereas 

trading volume appears to be mainly affected by the information arrivals count.  

b) Time deformation and market events 

Hasbrouck (1999) approaches time deformation as a common feature in the rates at which market 

process events such as orders, quote or trade frequency occur. While time deformation defined in 

this way can only be estimated dependent upon a specified time horizon, the author finds a positive 

                                                           
10 Clark (1973) implies that movements in returns are caused by a joint distribution between trading volume and prices 

conditional on current information 
11 This assumption is rational for mature markets. If the number of traders is evolving, then the average trading volume 

grows in a linear fashion with the number of traders.   
12 Harris (1986) shows that the relationship between returns variance and trading volume is also present in the cross-

section of stocks.  
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correlation in the long-term, although there is no persistent proportionality in the count intensities 

for different types of events. Jones et al. (1994) discover that the number of transaction per se, and 

not their size (i.e. volume), creates daily volatility. They state that the volume does not contain any 

extra information other than the one included in the trades count. In line with Jones et al. (1994), 

Ané and Geman (2000) report that the aggregate number of trades is a better business time clock 

than volume for generating independently and identically distributed Gaussian intraday returns. 

Dufour and Engle (2000), based on the VAR specification of Hasbrouck (1991), analyse the impact 

of time duration between successive transactions on the process of price formation. Their findings 

indicate that whenever these waiting times decline, trades have greater impact on prices, the latter 

adjust faster to trade-related information and the positive serial correlation of signed trades increases.  

They claim that active markets, where the increased participation of informed traders leads to high 

trading activity, are illiquid.  

Estimating a fully specified time deformation model for stock market dynamics is challenging. A 

number of the aforementioned papers suggest infinite variance distributions for price innovations; 

others use distributions with finite variance. Results regarding which distribution best describes price 

changes are inconclusive. Also, studies based on the MDH suggest different ways of approximating 

the mixing variable in the subordinate stochastic processes. While trading volume or the number of 

trades are the prevailing proxies, both are considered somewhat imperfect. Finally, all the above 

papers analyse only volume or price changes, not both, in the context of business time. Thus, their 

simultaneous inclusion in a time series model is not undertaken. The introduction of the notion of 

market microstructure invariance by Kyle and Obizhaeva (2013) aims to resolve these problems.  

2.2 Market Microstructure Invariance  

In market microstructure invariance theory,  Kyle and Obizhaeva (2016)  propose that trading 

activity constitutes a risk game, transferring  risk (in the form of a bet) from one market participant 

to another. Here, a bet is a decision to initiate a long-term position of a certain size in a specific 

security. Each bet can be executed either in its entirety or by sequentially placing orders, with each 

order potentially being segmented into small trades executed at different prices. To accentuate the 

idea of risk transfer, invariance measures trading activity as the product of expected  volume (in 

currency units) and return volatility, both expressed in business time, and defines the business-time 

clock as ticking  at the arrival rate of bets in the market. The arrival rate of bets is generated by a 
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compound Poisson process (to the extent  that the number of bets per calendar day follow a Poisson 

distribution) and price innovations stemming from bets follow a symmetric distribution around zero, 

with their unsigned size being log-normally distributed under the assumption of linear price impact.  

Market microstructure invariance complements existing theoretical models of market 

microstructure13 based on the notion that order flow imbalances generate price fluctuations and 

which develop measures of market depth or liquidity. Currently, there is neither a consolidated 

framework to construct empirical measures for order flow imbalances, nor to provide accurate 

forecasts regarding the differentiation of price impact across stocks. As a result,  the empirical 

proxies, for testing the relationship between price changes, order flow imbalances and their 

connection to stock characteristics are imperfect (e.g. Breen et al. (2002)). The invariance principle 

attempts to bridge the gap between theoretical market microstructure models and their empirical 

counterparts by imposing “cross-sectional restrictions” that facilitate both the empirical assessment 

of the former and the implementation of liquidity measures that are contingent on order flow 

imbalances.  

Andersen et al. (2015) extend market microstructure invariance theory and investigate whether the 

invariance of bets applies also to trades. As trades are by definition, fundamental components of 

bets, one can ask whether trades exhibit similar invariance relationships proposed for bets during 

trading days. Since the constituent variables of trading activity are measured at high frequencies, 

Andersen  et al. (2016) define the invariance principle as “intraday trading invariance”. To that end, 

using tick by tick data on the E-mini S&P 500 future contracts, they test empirically, on a minute by 

minute basis whether the trade arrival rate is proportional to 2/3 power of trading activity (i.e. the 

product of expected trading volume and returns volatility). They conclude that invariance properties 

appear to be present in the specific market, but they highlight the possibility that these results are not 

universal to every asset class and market. 

  

                                                           
13 More generally, market microstructure invariance consists of three principles proposed to hold across business time 

and securities: “invariance of bets”, “invariance of transactions costs” and “invariance of market efficiency and resilience 

“The three empirical hypotheses are thoroughly explained in Kyle and Obizhaeva (2013). This paper only considers the 

invariance of bets.  
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3. Model 

3.1 Notation 

According to Kyle and Obizhaeva (2013), market microstructure invariance is based on the 

assumption that over short calendar time periods the bet arrival rate BN (number of bets per unit of 

time) can be approximated by a compound Poisson process. Assuming that the inventories of 

intermediaries evolve in a bounded way, over longer periods the bets exhibit negative serial 

correlation and the bet arrival rate and distribution of bet size vary with trading activity. The bet 

arrival rate BN  measures market velocity. The signed size of bets (in shares, positive for buys and 

negative for sells) is represented by the probability distribution of a random variable Q  (number of 

shares) with a positive sign for purchases and a negative sign for sales, where {Q}E  is approximately 

zero.  

Kyle and Obizhaeva (2013) assume that on average one unit of bet volume : BV N E Q  results in 

  units of  total volume V  (i.e. 1   units of intermediation volume per one unit of bet volume). 

The expected total trading (market) volume during a specific calendar time is given by the following 

equation (each buy-sell bet pair is considered only once): 

 : Q
2

BV N E


     (1) 

where BN  is the bet arrival rate and | Q |E  the average bet size 

Given the aforementioned assumption and equation (1), the “expected bet volume” (stocks per unit 

of time) V  can be specified by the following expression: 

2
: BV N E Q V


       (2) 

where  is the “intermediation multiplier”    

The value of  , the intermediation multiplier, depends on the number of intermediaries in the 

market. A greater value means that more agents intermediate a bet transfer. In equation (2), 1   
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would mean that there are no intermediaries in the market. When there is only one market maker (i.e. 

market makes monopoly, 2  ), the expected bet volume equals the expected market volume            

( :V V ). A value of 3   equivalently implies two market makers, while for 3  there are 

multiple intermediaries in the market. In Kyle and Obizhaeva (2013) and Andersen  et al. (2016), the 

working  assumption is that there is only one market maker and thus the expected bet volume equals 

the expected market volume ( :V V ).  

Following Kyle and Obizhaeva (2013), we argue that during trading days stock price fluctuations lead 

to a percentage variance of respective returns, denoted as 2 . A function, 
2 , of the variation in 

asset prices is caused without trading, by information updating relating to prices and does not require 

trading. The other portion 
2 ,  occurs in response to order flow imbalances during trading. 

Assuming that order flow imbalances solely result from bets, we can define “trading volatility” as: 

:      (3) 

where   is the standard deviation of returns that stems from order flow imbalances related to bets. 

Finally, if P  (currency units per stock14) represents the stock price in currency units, then trading 

volatility in currency units is given by: 

:     P P  (4) 

Following Andersen  et al. (2016), we examine the relationship between the number of trades and 

trading activity, in order to provide empirical evidence relating to the first principle of market 

microstructure invariance, the invariance of bets.  This empirical hypothesis implies that “the pound 

distribution of risk in currency units transferred by bets is the same for all stocks when the risk transferred by a bet is 

measured in units of business time15” (Kyle and Obizhaeva, 2013, p 6).   

According to Kyle and Obizhaeva (2013), the trading volatility (in currency units) in one unit of 

business time (
-1/2

  BP N ) multiplied by the distribution of signed bet size (Q ) measures both, the 

                                                           
14 Kyle and Obizhaeva (2013) investigate US market and thus they measure price in dollars per stock  

15 As before in our case it is the distribution of risk in currency units and not the dollar distribution of risk as 

in Kyle and Obizhaeva (2013) 
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direction and size of the risk transferred by a bet per unit of business time. Intuitively, this means 

that in one unit of business time ( 1

BN ) a bet of size ( QP ) in currency units generates a standard 

deviation of mark-to-market gains or losses in currency units equal to 
-1/2

| Q |    BP N . The invariance 

of bets principle states that there exists a random variable, I ,  with a distribution equal that of 

-1/2

Q    BP N , which does not change across stocks: 

-1/2

Q    BI P N , 
-1/2

: Q     BI P N  (5) 

where I  is a market microstructure invariant 

The invariance equation in (5) is based on two assumptions. First, the intermediation multiplier is

2  , which implies a monopolistic market where the expected bet volume equals the expected 

market volume ( :V V ). Second, all fluctuations in returns stem from order flow imbalances (i.e. 

1  ). We argue that these hypotheses empirically do not hold in every market and asset category. 

For this reason we generalise the invariance of bets in (5) as follows: 

1: Q





    BI P N   (6) 

where   is a parameter such that 0 1    

The invariance specification in (6) is similar to the generalised invariance relationship introduced by 

Kyle and Obizhaeva (2010) as an alternative invariance hypothesis. For 0  , equation in (6) implies 

that the bet size remains constant, while there is a proportionality between trading activity and 

number of bets. In that case the invariance specification captures some of the properties suggested 

by Gabaix et al. (2006) and Hasbrouck (2009). For 1  , the number of bets per day remains 

constant, while the bet size is proportional to trading activity. In that case, equation in (6) resembles 

the model of Amihud (2002) and describes the common trading knowledge. In contrast to the 

specification of Kyle and Obizhaeva (2010), where   is a random parameter, here we allow   to be 

a function of the intermediation multiplier   and the percentage of order flow imbalances attributed 

to bets  . More specifically,   is defined as follows: 
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4
1

3





    (7)  

where   is the intermediation multiplier and   the percentage of order flow imbalances attributed 

to bets.  

From (7) it can easily be inferred that for 1   and 2  , the parameter   is equal to 1/ 3  and 

thus the relationship in (6) becomes the invariance hypothesis in (5). Intuitively, by introducing the 

parameter  , we assume that empirically, the risk transferred by a bet is not proportional to the 

square root of bet arrival rate, but to the bet arrival rate in the power of / (1 )  . This parameter 

depends on the intermediation multiplier   and the percentage of order flow imbalances attributed 

to bets   .  

Proceeding, the “expected trading activity” W is represented by the product of the expected trading 

volume P V  in currency units and the volatility of returns   in calendar time:    

:W P V     (8)  

Intuitively, expected trading activity W can be seen to be the standard deviation of mark-to-market 

gains or losses in currency units on all expected trading volume in one unit of calendar time (i.e. a 

measure of “total risk transfer” per unit of calendar time). Analogously, “expected bet activity” W is 

defined as: 

:W P V     (9) 

 where P V is expected  bet volume in currency units and   is trading volatility. 

In addition, the expected trading and bet activity are connected by the following equality (proof is 

presented in Appendix I-1): 

2
:W W




   (10) 

Expanding equation (9) in terms of total volume V , price P , volatility   and expected trading 

activity W , yields the following expression (proof is presented in Appendix I-2): 
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2
W QB BP N 


      (11) 

where Q | Q |B E  

Also, from the generalised invariance relationship in (6), taking expectations produces the following 

equation: 

1

B| I |:= P | Q | NE E





    (12) 

Solving for | Q |E  and substituting from (4) for price P  and volatility   gives, 

1 1 1 1

BQ I P NB



          (13) 

where Q | Q |B E  and I := | I |E , the mean of the invariant I  distribution  

Replacing QB  in (11) with the expression in (13), we obtain the invariance of bets in model terms 

(proof is presented in Appendix I-3): 

(7)

1 3

1 4

2 2
I :

B B

W W

N N



 

 

 


      (14) 

Since I  has an invariant distribution, its mean I  is a constant which does not depend on the trading 

activity W , intermediation multiplier   , fraction   or the bet arrival rate BN .  

Thus, from equation (14) it can be inferred that BN  is proportional to 
4

32
W






 . 

As a special case, if all asset prices change as a result from order flow imbalances stemming from 

bets, then 1  . If, in addition, the intermediation multiplier is 2  , then from the relationship in 

(14), it follows: 

3/2

W
I :

N


B

 (15) 
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Equation (15) is precisely the invariance relationship suggested by Kyle and Obizhaeva (2013) and 

Andersen  et al. (2016). 

4. Methodology 

4.1 Main Hypothesis  

The relationship in (14) constitutes the basis of our empirical invariance hypothesis.  We need to 

transform this proportional relationship between bets and trading activity into trading terms, in order 

to test it empirically. According to Andersen  et al. (2016), intraday trading invariance “stems 

directly” from market microstructure invariance and the connection between bets and trades. In fact, 

intraday trading invariance can be obtained from the market microstructure invariance hypothesis for 

bets by imposing an additional requirement that the average number of trades per bet remains 

constant and assuming that the fixed cost of making a trade is also constant.  

Given that market microstructure invariance implies an invariant distribution of I , using logarithms 

of means or means of logarithms for the relevant variables of trading activity  should only imply a 

marginal difference. For example, we could take logarithms in Equation (14) and continue with the 

derivation of the model for empirical analysis. However, following Andersen  et al. (2016), we first 

estimate the logarithms of variables and then their means.  

From the expression in (6) it is clear that 1: Q BI P N





    . Substituting from (4) for price P  

and volatility  , then 1: Q BI P N



 

     .  

If logarithms and expectations are applied, the following liner representation is produced: 

{log } log
2 1

B B

s
E I p q n





    


 (16) 

where p is the logarithm of prices, Bq  is the logarithm of the signed trade size Q , s  is the expected  

logarithmic value of variance 
2  , Bn  is the expected logarithmic value of the number of bets BN , 

Bq  is the expected value of Bq . 
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Solving equation (16) for Bn  and Bq  yields the following expressions which characterise the 

implications of the invariance of bets. These expressions hold across time and stocks (proof is 

presented in Appendix I-4): 

1 2

4
: (1 )

3
c

n c c w c w





      

 (17)  

where Bn  is the logarithm of the number of bets BN ,  
1 (1 ) {log }c E I    is a constant term that 

refers to the expected logarithmic value of the invariant variable I , 
2

2
: (1 ) log logc  



  
    

  

 is a 

constant term that refers to the logarithmic value of the square root of  
2  and the intermediation 

multiplier  , w  is the logarithm of expected trading activity   

1 2

4 1
: 1

2 3 2
B

c

s
q c c w p c w p s






    
             

    
 (18) 

where Bq  is the expected value of the logarithm of the signed trade size Q , p is the logarithm of 

prices, s  is the expected  logarithmic value of variance 
2 and similar to (17)  

1 : (1 ) {log }c E I   is a 

constant term that refers to the expected logarithmic value of the invariant variable I , 

2

2
: (1 ) log logc   



 
     

 
 is a constant term that refers to the logarithmic value of the square root 

of 
2  and the intermediation multiplier  , w  is the logarithm of expected trading activity. 

 

In equation (17) and (18), c  is a constant which is defined in different ways and takes distinct values 

across equations (for example 
2

: (1 ) {log } (1 ) log logc E I  


  
       

  
 in (17), while in (18) 

 
2

(1 ) log (1 ) log logc E I   


 
      

 
 ). 

Both equations formalise the intuition that as trading activity w  increases, holding s  and p  fixed, 

4

3




 of the increase can be attributed to the arrival rate of bets (speed of business time) and 

4
1

3






to the magnitude of bets. This relationship between the size and number of bets is the cornerstone 



 

17 
 

of market microstructure invariance. For instance, if 2   then 
2

3
 of the increase can be attributed 

to the arrival rate of bets and 
1

3
 to the magnitude of bets. This result is consistent with the findings 

of both Kyle and Obizhaeva (2013) and Andersen  et al. (2016). 

The market microstructure invariance equations (17) and (18) refer to low frequency bets. To test the 

invariance relationship between the number of trades and trading activity, we transform the specific 

equations using intraday trading variables that are directly observed in a defined sample of 

1,.......,d D  trading days and 1,......,t T  minute intervals within each day: 

1Qdt dt dt dt dtI P N





     (19) 

{log } log
2 1dt dt

dt
dt dt

s
E I p q n





    


 (20)    

where dtP  is the average price over minute t  of day d , Qdt (number of shares) is the average trade 

size over minute t  of day d , dt  is the expected returns volatility over minute t  of day , dtN

(number of trades per unit of calendar time) is the expected number of trades over minute t  of day 

d , while ,  ,  dt dt dtp q s  and dtn  are the logarithmic forms of the variables 

As in Andersen  et al. (2016), we assume that synergies between trading strategies of market 

participants means that the distribution of I  retain the same characteristics as in market 

microstructure invariance (i.e. identical and independent distribution across time). Consequently, dtI  

and {log }dtE I  in equations (19) and (20) respectively, are assumed to remain constant over day d  or 

time-of-day t . Also, the realisations of the employed variables are taken to be directly observable or 

easily estimated. Market participants select the expected trading size Qdt  in a way that reflects their 

trading requirements and prevailing cirnumstances in the market (i.e. their expectations for the 

number of trades dtN  and the volatility of returns dt ). However, the expected values of these 

variables vary considerably for each security as compared to  market expectations. Thus their realised 

values are different from a priori expectations. As a result, good estimators for the number of trades, 
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the volatility of returns and the trading volume are required in order to test the intraday trading 

hypothesis.  

Following closely the methodology of Andersen  et al. (2016), active trading participants acquire real-

time information on the state of the market and consequently they are able to form unbiased 

expectations for the number of transactions dtN  , trading volume dtV  and volatility dt  over the next 

minute. For this purpose, 1-minute intervals are used for the estimation of the variables16. In this 

context, the logarithms of a large number of one-minute observations are aggregated and averaged 

over various days. Averages are taken to mitigate the effect of sampling variation and measurement 

error. It is assumed that the large fluctuations during the day that remain after aggregation, provide 

an indication of fluctuations in the market’s expectations. The goal is not to investigate whether 

intraday trading invariance relationship holds for every time interval, but rather during the whole 

time span.  

If dtn   is the log number of trades for minute t  of day d  observed in transactions data, then by 

averaging the observations for this interval across all the days in the sample:  

1

1 D

t dt

d

n n
D 

   ,  1,......,t D   (21) 

where tn is the average log trades count for intraday interval t ,  

In a similar fashion we specify the variables ts , tq , t  and tw  as follows: 

1

1 D

t dt

d

s s
D 

  ,  
1

1 D

t dt

d

q q
D 

  ,  
1

1 D

t dt

dD
 



  ,  
1

1 D

t dt

d

w w
D 

  ,  1,......,t D  (22) 

 

where ts  is the average log realised volatility, tq  is the average log average trading size, t  is the 

average trading volume, tw  is the average log trading activity,  for intraday interval t , respectively. 

Alternatively, instead of averaging across all days, the number of trades can be averaged across all 

intraday intervals on trading day d : 

 

                                                           
16 Lower frequencies yield measures with smaller errors, they also cause an upward bias in estimators. 



 

19 
 

1

1



 
T

d dt

t

n n
T

, 1,......,d T  (23) 

 

The variables ds , dq , d  and dw  are specified in analogous fashion: 

1

1 T

d dt

t

s s
T 

  , 
1

1 T

d dt

t

q q
T 

  , 
1

1 T

d dt

tT
 



  ,
1

1 T

d dt

t

w w
T 

   (24) 

As in Andersen et al. (2001), the realised volatility dt  is calculated from 10-second returns,. 

Specifically, after filtering the data for outliers, we obtain prices in each 10-second time mark are 

obtained by taking the log average of the respective bid and ask quotes. Given that tick-by-tick data 

is not generally provided in continuously-spaced distinct time points, a number of bid and ask quotes 

are not available at the specific 10-second time mark. In some cases, the required midpoints are 

obtained by linearly interpolating between the previous and next available midpoint. We estimate the 

“continuously-compounded returns” using the difference between the 10th and 1st midpoints in each 

10-second time interval. The realised volatility dt  estimator for each minute is then defined as the 

sum of squared 10-second returns (i.e. six squared returns per minute).  

The returns are computed from bid and ask quotes and not from trade prices to avoid bid–ask 

bounce and stale prices effects that might yield a biased realised volatility estimator (Zhou, 1996; 

Andersen et al., 2000). The 10-second mark for the estimation of realised volatility is chosen to 

account for microstructure noise. Although the defined estimator suffers from measurement error in 

terms of actual local volatility, the sum of realised volatility across different one-minute intervals 

ensures its overall accuracy. This is the same “error diversification principle” as in Andersen  et al. 

(2016). 

Finally, we eliminate minutes without trades (i.e. 0dtN  ) or 10-second time points during which the 

realised volatility is zero from the sample, as otherwise the log specification is not feasible. Despite 

the fact that intraday trading invariance should hold in principle for any selected sample, omitting 

observations based on the above criterion will theoretically induce an increased bias in the estimator. 

Nevertheless, including periods with no or low trading activity in the sample might cause several 

complications for intraday trading invariance in the specific time intervals.     

Based on the above analysis, we now model the main invariance hypothesis under investigation. This 

implies proportionality between the number of trades 
jn  and trading activity 

jw , as follows:  
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Model 1: 

4
:

3

n

j j jn c w u



     (25) 

where j  represents either different intraday intervals (i.e. ,  1,.....,j t t T  ) or distinct trading days  

( i.e. ,  1,.....,j d t D  ) and 
n

ju  are the regression residuals.  

4.2 Alternative Hypotheses  

As already explained in literature review, there is a variety of time deformation and microstructure 

theories that examine the relationship between trading activity and volatility. Clark (1973) investigates 

the relationship between the trading volume and returns volatility and concludes that the expected 

volume can be used as a proxy for business clock, implying that it is directly proportional to return 

variation (i.e. 
2

dt dtV ). This proportionality can be expressed in logarithmic terms as: 

    dt dt dt dts c c n q . Based on this we specify the following first alternative to the main 

hypothesis with similar representation as in (25) (proof is presented in Appendix I-5):  

Model 2 (Clark, 1973): 

4 3
:

3 2 4

n

j j j jn c w q u
  

  

 
    

 
 (26) 

For 2  , equation (26) becomes the model analysed in Andersen  et al. (2016): 

2 3

3 2

n

j j j jn c w q u
 

    
 

 (27) 

In contrast to Clark (1973), other papers argue that the trade count is a better proxy for a business 

clock. For example, Ané and Geman (2000), based on earlier work by Jones et al. (1994), report a 

significant relationship between the number of trades and returns variations. Their empirical 

hypothesis indicate that the expected number of transactions is proportional to return variations (i.e. 

2

dt dtN ). This proportionality is expressed in logarithmic terms as: 
dt dts c n  . As such, we 

propose the following second alternative to the main hypothesis with a similar representation as in 

(25) (proof is presented in Appendix I-6):  
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Model 3 (Ané and Geman, 2000): 

4
:

3 2 2

n

j j j jn c w q u
  

  

 
    

 
 (28) 

For 2  , equation (25) becomes the model proposed by Andersen  et al. (2016): 

2

3
     

n

j j j jn c w q u  (29) 

Given that intraday invariance equation (19), it can be inferred that if the expected trade size ( Qdt ) 

does not vary, there is a proportionality between expected return volatility and transactions count      

(
2

dt dtN ) and between expected return volatility and trading volume (
2

dt dtV ). In this case, the 

principles of Clark (1973), Ané and Geman (2000) and intraday trading invariance are equivalent. On 

the contrary, if there is a correlation between variations in trade size and variations in return volatility 

and number of trades, then the aforementioned proportionality is no longer present. This is more 

likely to occur if the traders actively control for their risk exposures in business time, which in turn 

leads to a systematic variation of trade size with volume and volatility. In this case, the three theories 

will have different implications.  

4.3 Hypotheses testing 

We examine two different variations of the invariance and alternative hypotheses. The first variation 

corresponds to the invariance relationship introduced by Kyle and Obizhaeva (2013) and tested 

empirically for trades by Andersen  et al. (2016): 

0 1: 2 / 3H     

1 1: 2 / 3H     

The specific proportionality is based on the assumption that there is only one market maker (i.e. 

2  ) and that all price changes stem from order flow imbalances (i.e. 1  ) 

The second variation conjectures that the relationship between the number of trades and trading 

activity is 1/ 2 . Thus,  
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0 2: 1/ 2H    

1 2: 1/ 2H    

Intuitively this means that approximately, an order is intermediated in the market 2.56   times 

and that only 0.96   of the price changes is attributed to order flow imbalances.  The rest 4% is 

coming from overnight announcements17. 

5. The FTSE 100 Data 

In this paper, we use time-stamped tick data from Thompson Reuters Tick History for 25 stocks 

listed on FTSE 100 and traded on LSE (Appendix II-Table 1). The dataset includes tick-by-tick 

information on the best bid and ask quotes, prices, and trading volume (in shares), between 1st 

January 2007 and 31st December 2009 (3 years)18. The stocks in our sample are picked based on two 

criteria. First, they are regular constituents of FTSE 100 during the employed period (i.e. they have 

not been dropped from the index at any point). Thus, any survivorship bias that may affect the 

results is eliminated. Second, they represent 51% of the total market capitalisation of the index. After 

applying the first criterion, we rank the remaining 71 stocks based on their market capitalisation from 

high to low. Then, the stocks are classified into five groups, with the first group having the stocks 

with the highest market capitalisation and the fifth the stocks with the lowest market capitalisation 

                                                           
17 The value of the percentage of returns variations due to order flow imbalances is in line with Bouchaud et 

al. (2008), who assert  that the majority of return variations come from the supply and demand imbalances.    

18 In contrast to Andersen et al. (2015), Thompson Reuters Tick History does not report the aggregate ticks 

for each price level. As a result, the number of trades demonstrates also the order flow stemming from 

intermediation in the supply side. According to Andersen et al. (2015), this will lead to an increase of the 

transaction counts and decrease of trade size from the levels that invariance as a concept implies. However, 

reporting trades with same price as one quantity does not consider the case when the demand side requires 

more than the offered quantity of shares. In this case, their limit order at the top of the order book is matched 

with a different marketable order which may or not be at a same price with the first order. Thus, the 

intermediation of the demand side will not manifest itself. If we aggregate the trades at same price that will 

deflate the number of trades that refer to the same marketable offer and inflate the trade size.  
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respectively. Five stocks are selected from each group so that our sample of 25 stocks accounts for 

more than 50% of the market capitalisation of the index.   

We consider only trades for these stocks, between 8am and 4.30pm, five days a week, because only 

during this time span London Stock Exchange is open for continuous trading. Also, we exclude from 

our sample 30 days that correspond to holidays or other days with low trading activity (low volume 

and short trading hours), which leads to a total of 754 trading days. Each trading day is further 

divided into 510 one-minute intervals. During these intervals, we aggregate the observations for 

trading volume V , number of trades N and average trade size Q  so that we estimate their one-

minute values. The realised return volatility   for each minute is computed based on the approach 

explained in subchapter 4.1.  

The descriptive statistics of the dataset of 25 FTSE 100 stocks are depicted in Table 2 and Table 3 in 

Appendix II. Table 2 includes 1-minute averages and their standard deviations, with variables 

estimated using equations (21) and (22). Table 3 presents daily averages and their standard deviation, 

with variables estimated using equations (23) and (24). The stocks are reported in order, based on 

their market capitalisation, with RDSA having the highest and REX the lowest market capitalisation. 

Average annualised volatility for each stock is slightly less when volatility is estimated across all 

intraday intervals on trading day (Table 3), but standard deviation of the estimated values increases. 

However, it remains between 0.23 to 0.42 for all stocks, regardless of whether volatility is estimated 

by averaging observations across days for each minute (Table 2) or across intraday intervals on a day 

(Table 3). The case is similar for the other variables, which have minor differences in their mean 

values in Table 2 and Table 3 and higher standard deviation of means, when the respective variables 

are estimated across intraday intervals. Intuitively, the variables appear on average to fluctuate more 

during the course of trading day than across days for the same 1-minute interval.  

The intraday innovations of trading volume, V , number of trades N , average trade size Q  and 

annualised realised volatility  , for all 25 stocks,  are presented,  in Figure 1. The substantive graphs 

illustrate the respective variables for each minute between 8:00 and 16:30 (calendar time). The 

observations for each variable are averaged for every 1-minute interval across all trading days in the 

dataset, using the equations in (21) and (22).  There is a clear upward trend for all stocks between 

13.30 and 15.00, more obvious in the number of trades N and annualised realised volatility,  . That 

is because the specific time span coincides with the start of active trading in the US stock exchanges 

and/or because during this period most macroeconomic announcements and/or companies’ 
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announcements regarding key investor data are being realised. This fashion is less apparent for the 

trading volume, V , though the majority of the stocks exhibit an upturn in trading volume after 

13:00. As for the average trade size Q , there are spikes between 13:30 and 15:00 for some specific 

stocks, but they are not persistent. This can be attributed either to same reasons as the other 

variables or to stock specific characteristics. The trends in the trading volume V and average trade 

size Q  can be better observed in Figure 2 in Appendix II, in which the stocks with extreme values 

for each variable have been plotted in different graphs.  In total, the intraday patterns for trading 

volume V , number of trades N  and annualised realised volatility   are mostly similar, while 

average trade size Q  seems to be affected more by individual stock characteristics.  

If we average daily the intraday observations of the same variables during the whole time span, then 

the time series in Figure 3 are produced. The number of trades and the volatility of returns increase  

during the financial crisis (September 2008-February 2009) for the majority of the stocks, while the 

trading volume and the average trade size are higher during the period before the financial crisis19. 

Also, during the sample period the number of trades, return volatility and, to some degree, the 

trading volume, appear to follow similar pattern, in relation to the occurrence of specific major 

events, as compared to that of the average trade size, which follows an opposing direction of change. 

For example, the overnight injection of liquidity by the ECB in August 2007 leads to an increase in 

the number of trades, the returns volatility and the trading volume. Similar spikes are present in the 

respective graphs of these variables during the Société Générale scandal in January 2008 and the 

bankruptcy of Lehman Brothers in September 2008. In contrast, the average trade size decreases 

during the same events  for the majority of stocks. Finally, all variables show a drop during the end 

of each year, which is more obvious in the number of trades.    

 

                                                           
19 Similar to the averages across days the trends in the trading volume V and average trade size Q can be 

better observed in Figure 4 in Appendix II, in which the stocks with extreme values for each variable have 

been plotted in different graphs  
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Figure 1-The figure shows averages across days for the number of trades tN ,  volume tV  , trade size Q t  and annulaised volatility t  for all 

stocks in the sample per one minute interval. 
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Figure 3- The figure shows averages intraday for the number of trades dN , volume dV  , trade size Qd   and annulaised volatility d  for all 

stocks in the sample per day. 
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6. Empirical Results 

This section focuses on an analysis and comparison of the empirical analysis of the invariance 

relationship in (25) and the alternative models of Clark (1973) and Ané and Geman (2000), in (26) 

and (28), respectively. We start the analysis by investigating which of the two assumptions (i.e. 

1 2 / 3   or 
2 1/ 2  ) produces a proportionality that empirically describes the invariance relationship 

(i.e. the relationship between the number of trades and trading activity) in our sample. Subsequently, 

we compare the OLS regression coefficients of the Clark (1973) and Ané and Geman (2000) models 

with those from the  invariance model, to see which of the three models best capture the market 

microstructure properties in this specific market. We do this by employing variables estimated as 

average across days based on equations (21) and (22) and variables calculated as averages intraday 

based on equations (23) and (24).  

6.1 Number of trades and trading activity for each intraday interval: Main hypothesis  

First, we investigate if there exists a proportionality between the number of trades and trading 

activity based on the invariance model in (25). Results of OLS regressions for the number of trades 

regarding the 25 FTSE 100 stocks are presented in Table 4. The underlying variables are averages of 

respective observations for 1-minute and 5-minutes intervals across all days in the sample, as defined 

by equations (21) and (22). Τhe constant term and coefficients are the same when testing for 2/3 and 

1/2 proportionality, as the regression model for invariance does not change based on our theoretical 

model. Thus, in Table 4, we only report one regression result as estimates for models for a 2/3 and 

1/2 proportionality are the same. 

The estimated coefficients do not confirm the 2 / 3  proportionality between the transaction counts 

and trading activity in the specific sample. The null hypothesis for 1 2 / 3   is rejected for all stocks 

in both 1-minute and 5-minutes intervals at 1% significance level. On the contrary, the null 

hypothesis for 2 1/ 2   is accepted for one third of the stocks based on 1-minute intervals and 20 

out of 25 stocks based on 5-minute intervals at 5% significance level. In our sample, as already 

explained, minute intervals that do not include any trades and during which realised volatility is zero 

are omitted. The exclusion of periods with zero trades and minute intervals subject to zero realised 



 

28 
 

volatility generates an upward bias in the estimated averages and estimated volatilities in the next 

intervals, respectively.  

Table 5 in Appendix II reports the percentage of intervals excluded when averaging for 1-minute and 

5-minutes for each stock. As the percentage of exclusions in 1-minute intervals is greater, in turn 

estimation becomes less accurate. This would explain why the adjusted R-squared for 1-minute 

intervals, especially for some stocks, is lower as compared to the equivalent for 5-minutes intervals, 

and why the coefficients (i.e. estimated proportionality) do not converge to a certain value. In 

contrast to Andersen  et al. (2016), who report the same  2 / 3   proportionality for 1-minute and 5-

minutes intervals, we find that in our sample the relationship between the number of trades and 

trading activity is not consistent in the high-frequency (i.e. 1-minute) intervals. The reason is most 

likely that FTSE 100 stocks are less actively traded compared to the E-mini S&P future contracts 

analysed in Andersen  et al. (2016). The number of observations with zero trades and intervals with 

zero realised volatility are fewer in their sample, thus their results suffer from smaller bias in high 

frequencies. Averaging the observations in the low frequency 5 minutes intervals, yields a on average 

less significant constant term. Given that the constant term represents in part the expected 

logarithmic value of the invariant variable I (i.e. {log }E I ), this means that the specific variable is also 

not significantly different from zero or that is equal to  2
log log



 
   

 
, where   is the  

intermediation multiplier  and   the percentage of order flow imbalances attributed to trades. 

Consequently, based on the invariance model, only 17 stocks out of the 25 stocks examined, show a 

robust  1/ 2  relationship between the number of trades and trading activity. Consistent with Kyle 

and Obizhaeva (2013) conjecture, market capitalisation does not appear to be a factor affecting the 

invariance relationship, as stocks with different market capitalisation exhibit similar 1/ 2  

proportionality.  

Taking into account the findings in Table 4, we conjecture that the invariance relationship in our 

sample is closer to 1/ 2  rather than 2/3. Intuitively, this means that half of the variations in trading 

activity are attributed to the arrival rate of trades and half to the average trade size. Therefore, the 

invariance model in (25) takes the following expression: 
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Model 1 (Invariance): 

1

2

n

j j jn c w u     (30) 

Moving one step forward we now compare the OLS regression coefficients estimated for the models 

of Clark (1973) and Ané and Geman (2000) with those obtained for the invariance model. 

Accordingly, we re-specify the models of Clark (1973) in equation (26) and Ané and Geman (2000) 

in equation (28), respectively, so as to ensure similar 2 / 3  and 1/ 2  representations.  The purpose 

here is to decide which of the underlying theories that are represented by these models better 

captures the microstructure properties in the specific sample. The resulting specifications for the 

models of Clark (1973) and Ané and Geman (2000) are: 

Model 2 (Clark, 1973): 

For 2 / 3  proportionality:  

2 3
:

3 2

n

j j jn c w q u
 

    
 

 (31) 

For 1/ 2  proportionality:  

1 4
: 2

2 3

n

j j jn c w q u
 

    
 

 (32) 

Model 3 (Ané and Geman, 2000): 

For 2 / 3  proportionality:  

2
:

3

n

j j j jn c w q u       (33) 

For 1/ 2  proportionality:  

1 4 4
:

2 3 3

n

j j j jn c w q u
 

    
 

 (34) 
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Table 4-OLS Regression results for Model 1 (Invariance). Variables estimated as averages across days. Stocks 

are grouped by market capitalization. c is  the constant term of the invariance model in (25). 
2 4 / 3    is the coefficient 

(i.e. proportionality) of the invariance model in (25) and refers to the null hypothesis of 1/2 proportionality. Significance against 

2/3 or 1/2 proportionality is tested with a Wald test. Numbers in bold signify that the null hypothesis of 1/2 proportionality is 

accepted.  ̅2 is the adjusted R-squared of the OLS regressions. * refers to 5%, ** to 1% and *** to 0.1% significance level.  

  1 minute  5 minutes 

Groups Stocks        c β2  ̅2         c β2  ̅2 

G
ro

u
p

 1
 

H
ig

h
e

st
 M

k
t 

C
a

p
 RDSA 

-0.0919* 
(0.0385) 

0.4928 
(0.0103) 0.8194 

 -0.1501 
(0.1154) 

0.5417* 
(0.0186) 0.8934 

BP 
 0.2414*** 
(0.0449) 

0.5090 
(0.0086) 

0.8721 
 0.2451 

(0.1458) 
0.5338 

(0.0186) 
0.8904 

HSBA 
 0.3556*** 
(0.0439) 

0.4877 
(0.0084) 

0.8680 
  0.3944* 

(0.1521) 
0.5159 

(0.0193) 
0.8763 

GSK 
 0.0917 
(0.0480) 

0.5409*** 
(0.0103) 

0.8443 
  0.2550 

(0.1604) 
0.5404 

(0.0224) 
0.8525 

VOD 
 0.7540*** 
(0.0505) 

0.4481*** 
(0.0106) 

0.7772 
  0.8613*** 

(0.1710) 
0.4749 

(0.0226) 
0.8139 

G
ro

u
p

 2
 

U
p

p
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

BLT 
-0.0285 
(0.0446) 

0.5468*** 
(0.0083) 

0.8957 
  0.0150 

(0.1546) 
0.5617** 
(0.0191) 

0.8956 

BG 
 0.2110*** 
(0.0530) 

0.4892 
(0.0121) 0.7639 

  0.5369** 
(0.1725) 

0.4851 
(0.0251) 0.7873 

XTA 
 0.4553*** 
(0.0450) 

0.4510*** 
(0.0091) 0.8288 

  0.6519*** 
(0.1559) 

0.47585 
(0.0199) 0.8491 

NG 
 0.1792*** 
(0.0463) 

0.5261* 
(0.0127) 0.7721 

  0.4076* 
(0.1654) 

0.5242 
(0.0281) 0.7751 

STAN 
 0.4137*** 
(0.0470) 

0.4466*** 
(0.0110) 0.7648 

  0.6002*** 
(0.1480) 

0.4744 
(0.0216) 0.8266 

G
ro

u
p

 3
 

M
id

d
le

 M
k

t 
C

a
p

 

EMG 
 0.5408*** 
(0.0469) 

0.4054*** 
(0.0133) 0.6464 

  0.5842*** 
(0.1591) 

0.4690 
(0.0266) 0.7546 

OML 
 1.0820*** 
(0.0422) 

0.2826*** 
(0.0152) 0.4054 

  0.9239*** 
(0.1489) 

0.4327* 
(0.0280) 0.7023 

WPP 
 0.2805*** 
(0.0447) 

0.5087 
(0.0130) 0.7512 

  0.4007* 
(0.1582) 

0.5230 
(0.0274) 0.7826 

BLND 
 0.5727*** 
(0.0514) 

0.4256*** 
(0.0157) 

0.5908 
  0.6169** 

(0.1909) 
0.4841 

(0.0331) 
0.6786 

RR 
 0.4673*** 
(0.0404) 

0.4513*** 
(0.0125) 

0.7176 
  0.5413*** 

(0.1520) 
0.4960 

(0.0268) 
0.7714 

G
ro

u
p

 4
 

L
o

w
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

CCL 
 0.2531*** 
(0.0305) 

0.5157 
(0.0104) 

0.8278 
  0.1597 

(0.1148) 
0.5605** 
(0.0220) 

0.8655 

SMIN 
 0.4539*** 
(0.0389) 

0.4480*** 
(0.0146) 

0.6503 
  0.3997** 

(0.1420) 
0.5170 

(0.0298) 
0.7477 

SHP 
 0.3269*** 
(0.0395) 

0.4800 
(0.0124) 

0.7454 
  0.3214* 

(0.1263) 
0.5253 

(0.0238) 
0.8281 

IPR 
 0.4932*** 
(0.0461) 

0.4571** 
(0.0154) 0.6331 

  0.5484** 
(0.1661) 

0.5040 
(0.0314) 0.7180 

IMT 
 0.4036*** 
(0.0486) 

0.4827 
(0.0138) 0.7065 

  0.5722*** 
(0.1714) 

0.4990 
(0.0289) 0.7459 

G
ro

u
p

 5
 

L
o

w
e

st
 M

id
d

le
 M

k
t 

C
a

p
 

SVT 
 0.2871*** 
(0.0380) 

0.5322* 
(0.0147) 0.7194 

  0.2360 
(0.1393) 

0.5712* 
(0.0302) 0.7798 

CNE 
 0.4461*** 
(0.0400) 

0.4343*** 
(0.0146) 0.6357 

  0.3371* 
(0.1516) 

0.5155 
(0.0300) 0.7443 

JMAT 
 0.3525*** 
(0.0396) 

0.4959 
(0.0155) 0.6688 

  0.2338 
(0.1439) 

0.5585 
(0.0306) 0.7670 

SGE 
 0.6104*** 
(0.0362) 

0.4324*** 
(0.0156) 0.6022 

  0.3467* 
(0.1351) 

0.5496 
(0.0303) 0.7649 

REX 
 0.5797*** 
(0.0338) 

0.4233*** 
(0.0140) 0.6417 

  0.4587*** 
(0.1295) 

0.5163 
(0.0284) 0.7656 
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Tables 6 and 7 depict the results of OLS regressions for the number of trades regarding the 25 FTSE 

100 stocks based on the models of Clark (1973) and  Ané and Geman (2000), respectively. The 

underlying variables here are also averages of respective observations for 1-minute and 5-minutes 

intervals across all days in the sample. As in the invariance model, the estimation of variables in low 

frequency 5-minutes intervals is more accurate than that of 1-minute, because more observations are 

included in the analysis. This is clearly demonstrated by the adjusted R-squared, which improves for 

both models when we average the observations in lower frequency.  Both models fit the data better 

compared to the invariance model, their constant term is significant, while they can predict both 

2 / 3  and 1/ 2 relationships (for the same stocks), especially in 5-minutes intervals. The 

representation of models that refers to 1/ 2  proportionality yields coefficients with lower standard 

errors. This is an indication that our assumption of 1/ 2  and not 2 / 3  relationship between the 

number of trades and trading activity is appropriate for the specific sample. Also, specifying the 

models of Clark (1973) and  Ané and Geman (2000) in invariance terms simplifies their empirical  

testing, while the high values of adjusted R-squared for the models show that invariance, as a 

principle,  improves their performance. This is in line with Kyle and Obizhaeva (2013),  who state 

that invariance is a principle that can complement and be applied to different models in way that 

facilitates their empirical testing.  

The model of Clark (1973), accepts the null hypothesis of 2 1/ 2   for the majority of stocks (19 

out of 25) in 5-minutes interval, while the model of  Ané and Geman (2000) accepts it only for 1/3 

of the stocks at the same frequency. Also, the model of Ané and Geman (2000) performs better for 

lower market capitalisation stocks. Among the three models, the model of  Clark (1973) appears to 

have higher estimation precision in predicting the required 1/ 2  proportionality20, notably for the 

very high capitalisation stocks of RDSA and BP. An interesting fact is that all three models predict 

1/ 2  proportionality for certain stocks 21 . Intuitively, this means that for the specific stocks the 

number of trades and volume are proportional to returns variation, while the number of trades is 

also proportional to trading activity.  This can be attributed to stock specific characteristics the 

                                                           
20 It empirically predicts 1/2 proportionality for two more stocks compared to the invariance model, while its 

adjusted R- squared is higher.   

21 The only stock for which the required proportionality is not empirically predicted by any of the three 

models is OML.  
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Table 6- OLS Regression results for Model 2 (Clark, 1973). Variables estimated as averages across days. Stocks are 

grouped by market capitalization. c is the constant term in both (31) and (32). 
1  is the coefficient of Clark’s model 

specification in (31), referring to a 2/3 proportionality. 
2  is the coefficient of Clark’s model specification in (32) 

referring to a 1/2 proportionality. Significance against 2/3 or 1/2 proportionality is tested with a Wald test. Numbers 

in bold signify that the null hypothesis (
1 =2/3 or 

2 =1/2) is accepted.  ̅2 is the adjusted R-squared of the OLS 

regressions. * refers to 5%, ** to 1% and *** to 0.1% significance level.       

  1 minute  5 minutes 

Groups Stocks        c       β1 β2  ̅2         c       β1 β2  ̅2 

G
ro

u
p

 1
 

H
ig

h
e

st
 M

k
t 

C
a

p
 

RDSA 
 6.1758*** 
(0.0529) 

 0.7025*** 
(0.0084) 

 0.5269*** 
(0.0063) 

0.9328 
  6.0397*** 

(0.0678) 
 0.6757 
(0.0159) 

 0.5068 
(0.0119) 

0.9470 

BP 
 7.7796*** 
(0.0456) 

 0.6997*** 
(0.0065) 

 0.5248*** 
(0.0049) 

0.9582 
  7.5912*** 

(0.0801) 
 0.6697 
(0.0168) 

 0.5023 
(0.0126) 

0.9405 

HSBA 
 7.4500*** 
(0.0391) 

 0.6862*** 
(0.0058) 

 0.5147*** 
(0.0044) 0.9644 

  7.2880*** 
(0.0598) 

 0.6593 
(0.0138) 

 0.4945 
(0.0103) 0.9577 

GSK 
 6.9618*** 
(0.0502) 

 0.7263*** 
(0.0083) 

 0.5447*** 
(0.0063) 0.9371 

  6.5978*** 
(0.0785) 

 0.6525 
(0.0205) 

 0.4893 
(0.0154) 0.9093 

VOD 
 8.4832*** 
(0.0992) 

 0.6175*** 
(0.0109) 

 0.4631*** 
(0.0082) 0.8636 

  8.5106*** 
(0.1336) 

 0.6151* 
(0.0201) 

0.4613* 
(0.0151) 0.9022 

G
ro

u
p

 2
 

U
p

p
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

BLT 
 6.4200*** 
(0.0257) 

 0.6931*** 
(0.0050) 

 0.5198*** 
(0.0038) 0.9740 

  6.2402*** 
(0.0330) 

 0.6489 
(0.0124) 

 0.4867 
(0.0093) 0.9646 

BG 
 6.4807*** 
(0.0693) 

 0.6678 
(0.0112) 

 0.5008 
(0.0084) 0.8750 

  6.2751*** 
(0.0935) 

 0.6043** 
(0.0233) 

 0.4532** 
(0.0175) 0.8696 

XTA 
 5.6749*** 
(0.0388) 

 0.6115*** 
(0.0079) 

 0.4586*** 
(0.0059) 0.9223 

  5.7106*** 
(0.0419) 

 0.5905*** 
(0.0179) 

 0.4429*** 
(0.0134) 0.9153 

NG 
 7.0318*** 
(0.0856) 

 0.7005** 
(0.0121) 

 0.5254** 
(0.0091) 0.8681 

  6.7254*** 
(0.1424) 

 0.6375 
(0.0279) 

 0.4781 
(0.0209) 0.8376 

STAN 
 5.8203*** 
(0.0472) 

 0.6207*** 
(0.0083) 

 0.4656*** 
(0.0063) 

0.9160 
  5.8275*** 

(0.0590) 
 0.5929*** 
(0.0174) 

 0.4447*** 
(0.0130) 

0.9202 

G
ro

u
p

 3
 

M
id

d
le

 M
k

t 
C

a
p

 

EMG 
 6.4432*** 
(0.1140) 

0.5836*** 
(0.0148) 

0.4377*** 
(0.0111) 

0.7526 
  6.6737*** 

(0.1487) 
 0.5972* 
(0.0268) 

 0.4479* 
(0.0201) 

0.8305 

OML 
 5.4404*** 
(0.1781) 

 0.3669*** 
(0.0182) 

 0.2752*** 
(0.0137) 

0.4424 
  7.2265*** 

(0.2073) 
 0.5355*** 
(0.0276) 

 0.4016*** 
(0.0207) 

0.7882 

WPP 
 7.1162*** 
(0.1050) 

 0.7009* 
(0.0144) 

 0.5257* 
(0.0108) 

0.8230 
  6.8630*** 

(0.1531) 
 0.6638 
(0.0292) 

 0.4978 
(0.0219) 

0.8360 

BLND 
 6.2059*** 
(0.1283) 

 0.6263* 
(0.0189) 

 0.4697* 
(0.0142) 

0.6836 
  6.2907*** 

(0.1542) 
 0.6328 
(0.0335) 

 0.4746 
(0.0251) 

0.7786 

RR 
 6.7851*** 
(0.1150) 

 0.6204** 
(0.0146) 

 0.4653** 
(0.0110) 0.7802 

  6.8781*** 
(0.1597) 

 0.6202 
(0.0278) 

 0.4651 
(0.0209) 0.8306 

G
ro

u
p

 4
 

L
o

w
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

CCL 
 5.6603*** 
(0.0691) 

 0.6921* 
(0.0121) 

 0.5191* 
(0.0091) 0.8647 

  5.5263*** 
(0.0823) 

 0.6841 
(0.0223) 

 0.5131 
(0.0167) 0.9030 

SMIN 
 5.9425*** 
(0.1245) 

 0.6336 
(0.0183) 

 0.4752 
(0.0137) 0.7019 

  6.2390*** 
(0.1532) 

 0.6797 
(0.0305) 

 0.5098 
(0.0228) 0.8311 

SHP 
 6.4656*** 
(0.1060) 

 0.6988* 
(0.0160) 

 0.5241* 
(0.0120) 0.7899 

  6.2962*** 
(0.1312) 

 0.6789 
(0.0276) 

 0.5091 
(0.0207) 0.8572 

IPR 
 6.9978*** 
(0.1492) 

 0.6316 
(0.0183) 

 0.4737 
(0.0137) 0.7009 

  7.0746*** 
(0.2010) 

 0.6322 
(0.0327) 

 0.4741 
(0.0245) 0.7869 

IMT 
 6.0077*** 
(0.0899) 

 0.7056* 
(0.0162) 

 0.5292* 
(0.0121) 0.7889 

  5.7213*** 
(0.1064) 

 0.6458 
(0.0308) 

 0.4844 
(0.0231) 0.8126 

G
ro

u
p

 5
 

L
o

w
e

st
 M

id
d

le
 M

k
t 

C
a

p
 

SVT 
 5.8940*** 
(0.1030) 

 0.6751 
(0.0163) 

 0.5063 
(0.0123) 0.7702 

  5.9539*** 
(0.1317) 

 0.6854 
(0.0289) 

 0.5140 
(0.0217) 0.8475 

CNE 
 4.8999*** 
(0.1131) 

 0.5947*** 
(0.0205) 

 0.4460*** 
(0.0154) 

0.6223 
  5.2562*** 

(0.1242) 
 0.6673 
(0.0352) 

 0.5005 
(0.0264) 

0.7806 

JMAT 
 5.2180*** 
(0.1089) 

 0.5966*** 
(0.0180) 

 0.4475*** 
(0.0135) 

0.6841 
  5.5385*** 

(0.1287) 
 0.6467 
 (0.0305) 

 0.4850 
(0.0229) 

0.8159 

SGE 
 6.5369*** 
(0.1807) 

 0.5537*** 
(0.0203) 

 0.4152*** 
(0.0152) 

0.5946 
  7.5599*** 

(0.2234) 
 0.6753 
(0.0314) 

 0.5065 
(0.0236) 

0.8202 

REX 
 6.1611*** 
(0.1639) 

 0.5669*** 
(0.0203) 

 0.4252*** 
(0.0152) 

0.6049 
  6.8040*** 

(0.1999) 
 0.6455 
(0.0321) 

 0.4841 
(0.0240) 

0.8002 
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Table 7- OLS Regression results for Model 3 (Ané and Geman, 2000). Variables estimated as averages across days. 

Stocks are grouped by market capitalization. c is  the constant term in both (33) and (34). 
1  is the coefficient of 

Ané and Geman’s model specification in (33), referring to a 2/3 proportionality. 
2  is the coefficient of Ané and 

Geman’s model specification in (34), referring to a 1/2 proportionality. Significance against 2/3 or 1/2 

proportionality is tested with a Wald test. Numbers in bold signify that the null hypothesis is accepted.  ̅2 is the 

adjusted R-squared of the OLS regressions. * refers to 5%, ** to 1% and *** to 0.1% significance level.       

  1 minute  5 minutes 

Groups Stocks        c       β1 β2  ̅2         c       β1 β2  ̅2 

G
ro

u
p

 1
 

H
ig

h
e

st
 M

k
t 

C
a

p
 RDSA 

 3.6204*** 
(0.0263) 

 0.6330*** 
(0.0088) 

 0.4748*** 
(0.0066) 0.9113 

  3.6656*** 
(0.0164) 

 0.6287* 
(0.0167) 

 0.4716* 
(0.0126) 0.9332 

BP 
 4.7418*** 
(0.0215) 

 0.6331*** 
(0.0071) 

 0.4748*** 
(0.0053) 0.9396 

  4.7618*** 
(0.0138) 

 0.6214* 
(0.0173) 

 0.4660* 
(0.0130) 0.9272 

HSBA 
 4.5595*** 
(0.0181) 

 0.6186*** 
(0.0065) 

 0.4640*** 
(0.0049) 0.9467 

  4.6021*** 
(0.0096) 

 0.6109*** 
(0.0157) 

 0.4582*** 
(0.0118) 0.9376 

GSK 
 4.2366*** 
(0.0219) 

 0.6658 
(0.0088) 

 0.4994       
(0.0066) 0.9193 

  4.2107*** 
(0.0119) 

 0.6144* 
(0.0210) 

 0.4608* 
(0.0158) 0.8940 

VOD 
 5.3737*** 
(0.0484) 

 0.5580*** 
(0.0107) 

 0.4185*** 
(0.0080) 0.8429 

  5.5129 
(0.0420) 

 0.5648*** 
(0.0212) 

 0.4236*** 
(0.0159) 0.8750 

G
ro

u
p

 2
 

U
p

p
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

BLT 
 3.9329*** 
(0.0103) 

 0.6453*** 
(0.0061) 

 0.4840*** 
(0.0046) 

0.9570 
  3.9559*** 

(0.0167) 
 0.6222** 
(0.0146) 

 0.4666** 
(0.0109) 

0.9475 

BG 
 3.9844*** 
(0.0302) 

 0.6130*** 
(0.0112) 

 0.4598*** 
(0.0084) 

0.8546 
  4.0743*** 

(0.0154) 
 0.5627*** 
(0.0240) 

 0.4220*** 
(0.0180) 

0.8443 

XTA 
 3.5807*** 
(0.0141) 

 0.5556*** 
(0.0083) 

 0.4167*** 
(0.0062) 

0.8990 
  3.7700*** 

(0.0224) 
 0.5500*** 
(0.0187) 

 0.4125*** 
(0.0140) 

0.8956 

NG 
 4.3703*** 
(0.0413) 

 0.6529 
(0.0117) 

 0.4897 
(0.0088) 

0.8588 
  4.3425*** 

(0.0422) 
 0.5990* 
(0.0279) 

 0.4492* 
(0.0209) 

0.8199 

STAN 
 3.6424*** 
(0.0221) 

 0.5659*** 
(0.0093) 

 0.4244*** 
(0.0070) 

0.8798 
  3.8170*** 

(0.0105) 
 0.5527*** 
(0.0190) 

 0.4145*** 
(0.0143) 

0.8929 

G
ro

u
p

 3
 

M
id

d
le

 M
k

t 
C

a
p

 

EMG 
 4.0371*** 
(0.0561) 

 0.5253*** 
(0.0141) 

 0.3940*** 
(0.0106) 0.7307 

  4.3115*** 
(0.0479) 

 0.5511*** 
(0.0268) 

 0.4133*** 
(0.0201) 0.8066 

OML 
 3.7753*** 
(0.0961) 

 0.3427*** 
(0.0171) 

 0.2571*** 
(0.0129) 0.4394 

  4.8297*** 
(0.0912) 

 0.5000*** 
(0.0278) 

 0.3750*** 
(0.0209) 0.7613 

WPP 
 4.3854*** 
(0.0506) 

 0.6380* 
(0.0135) 

 0.4785* 
(0.0102) 0.8135 

  4.3596*** 
(0.0472) 

 0.6126 
(0.0285) 

 0.4594 
(0.0214) 0.8199 

BLND 
 3.8800*** 
(0.0608) 

 0.5592*** 
(0.0176) 

 0.4194*** 
(0.0138) 0.6657 

  4.0541*** 
(0.0418) 

 0.5792* 
(0.0336) 

 0.4344* 
(0.0252) 0.7458 

RR 
 4.2765*** 
(0.0567) 

 0.5671*** 
(0.0135) 

 0.4253*** 
(0.0101) 0.7761 

  4.4472*** 
(0.0551) 

 0.5759** 
(0.0275) 

 0.4319** 
(0.0206) 0.8128 

G
ro

u
p

 4
 

L
o

w
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

CCL 
 3.5075*** 
(0.0324) 

 0.6279*** 
(0.0113) 

 0.4709*** 
(0.0085) 0.8590 

  3.4935*** 
(0.0230) 

 0.6390 
(0.0222) 

 0.4792 
(0.0167) 0.8912 

SMIN 
 3.7560*** 
(0.0603) 

 0.5805*** 
(0.0165) 

 0.4354*** 
(0.0123) 0.7098 

  3.9365*** 
(0.0557) 

 0.6229 
(0.0302) 

 0.4671 
(0.0226) 0.8081 

SHP 
 3.9337*** 
(0.0481) 

 0.6227*** 
(0.0142) 

 0.4670** 
(0.0106) 

0.7916 
  3.9553*** 

(0.0396) 
 0.6218 
(0.0260) 

 0.4663 
(0.0195) 

0.8502 

IPR 
 4.4354*** 
(0.0755) 

 0.5818*** 
(0.0169) 

 0.4363*** 
(0.0127) 

0.6991 
  4.5693*** 

(0.0770) 
 0.5871* 
(0.0322) 

 0.4404* 
(0.0242) 

0.7661 

IMT 
 3.6941*** 
(0.0381) 

 0.6323* 
(0.0149) 

 0.4742* 
(0.0112) 

0.7799 
  3.7001*** 

(0.0178) 
 0.5937* 
(0.0301) 

 0.4453* 
(0.0225) 

0.7940 

G
ro

u
p

 5
 

L
o

w
e

st
 M

id
d

le
 M

k
t 

C
a

p
 

SVT 
 3.7855*** 
(0.0514) 

 0.6398 
(0.0153) 

 0.4799 
(0.0115) 

0.7750 
  3.8171*** 

(0.0464) 
 0.6474 
(0.0293) 

 0.4856 
(0.0220) 

0.8284 

CNE 
 3.1316*** 
(0.0497) 

 0.5446*** 
(0.0179) 

 0.4084*** 
(0.0134) 

0.6457 
  3.3250*** 

(0.0280) 
 0.6102 
(0.0332) 

 0.4576 
(0.0249) 

0.7696 

JMAT 
 3.4412*** 
(0.0538) 

 0.5747*** 
(0.0168) 

 0.4310*** 
(0.0126) 0.6976 

  3.5975*** 
(0.0414) 

 0.6177 
(0.0305) 

 0.4633 
(0.0229) 0.8024 

SGE 
 4.3086*** 
(0.0948) 

 0.5227*** 
(0.0182) 

 0.3921*** 
(0.0137) 0.6170 

  4.8287*** 
(0.1021) 

 0.6318 
(0.0309) 

 0.4739 
(0.0232) 0.8047 

REX 
 4.0248*** 
(0.0800) 

 0.5316*** 
(0.0174) 

 0.3987*** 
(0.0131) 0.6468 

  4.3771*** 
(0.0820) 

 0.6011* 
(0.0304) 

 0.4508 
(0.0228) 0.7940 
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discussion of which exceeds the intended scope of this paper. The stocks (WPP, SMIN, SHP, CNE 

and SGE) for which all three models empirically predict the 1/ 2  proportionality have medium to 

low market capitalisation (Groups 3 to 5).   

To further examine which model predicts more accurately the 1/ 2  proportionality between the 

number of trades and trading activity in the sample, we plot the number of trades ( tn  ) against 

trading activity ( tw ) for invariance model, ( tn  ) against 
4

2
3

t tw q   for the model of Clark (1973) 

and ( tn  ) against 
4 4

3 3
t tw q for the model of Ané and Geman (2000). Here we report only three 

stocks (WPP, SMIN and CNE), for which all models generate 1/ 2  proportionality. In that way the 

comparison between the models is straightforward. The respective variables are averages of 5-

minutes interval across all days22. Figure 5 shows scatter plots of the number of trades against the 

respective notions of trading activity. All three models predict the slope of regression line (i.e. 

coefficient  ) to be  1/ 2 , represented by the dashed line in each respective plot. The actual 

regression line for each model is depicted as a solid black line. All plots show that the model of Clark 

(1973) predicts more accurately the 1/ 2 proportionality (the predicted dashed line almost coincides 

with the actual solid black regression line). The invariance model is the second best in predicting the 

required proportionality, whereas the model of Ané and Geman (2000) is the least accurate. The 

scatterplots confirm the findings of OLS regressions. Even for the stocks that all models accept the 

1/ 2  proportionality, the model of Clark is more precise, with smaller standard errors and higher 

adjusted R-squared.  

Taking into account the descriptive statistics in Table 2 (Appendix II), the model of Ané and Geman 

(2000) does not yield significant coefficients in terms of 1/ 2  proportionality when the number of 

trades per minute is on average very high (e.g. for stocks BLT, BP, HSBA, VOD). OML is the only 

stock for which none of the models is able to predict the required relationship between trade counts 

and trading activity. A possible explanation is that OML is the stock with the lowest on average 

price, with the second highest average volatility and trade size, as well as very high average trading 

                                                           
22 As stated above, the low frequency 5-minutes intervals produce more accurate estimation than high 

frequency 1-minute intervals. Thus, the regressions for 5-minutes intervals will give a more distinct and 

accurate difference between the invariance model and the other two models.    
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Figure 3-The graphs represent scatterplots of the number of trades ( tn  ) against trading activity (

tw ) for invariance model, 
4

2
3

t tw q   for the model of Clark (1973) and 
4 4

3 3
t tw q  for the model of 

Ané and Geman (2000) 

WPP: Invariance  model SMIN: Invariance  model CNE: Invariance  model 

   
WPP:  Clark (1973) SMIN:  Clark (1973) CNE:  Clark (1973) 

   
WPP: Ané and Geman (2000) SMIN: Ané and Geman (2000) WPP: Ané and Geman (2000) 

   
 

volume. The interaction of these variables breaks any proportionality of trades count and volume 

with returns variation and trades count with trading activity. Finally, the invariance model is the only 

model that accepts the null hypothesis for  1/ 2  proportionality for stocks with high average 

volatility, whereas the other alternative models are less precise when high volatility is present. The 

only exception is stock BLT, which has the highest number of trades on average. The invariance 

model predicts a higher than 1/ 2   proportionality between the number of trades and trading activity 

for the specific stocks. This means that on average the specific number of trades should be stemming 
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from a lower total risk transfer, or given the number of trades and trading activity, that the total risk 

should be transferred faster for the specific stock. The fact that this stock exhibits only 

proportionality between the trading volume and volatility means that changes in trade size are less 

correlated with innovations in returns volatility and number of trades than invariance implies. This 

finding is in line with Andersen  et al. (2016), who argue that invariance indicate no proportionality 

between number of trades and trading volume to returns variation, when there exists a correlation 

between the innovation in trade size and returns volatility and number of trades, respectively.  

In general, empirically the invariance model yields coefficients that are higher than the coefficients of 

the alternative models in our sample. This can be attributed to the expression of both volume and 

volatility in business time and not simply volume (either expressed as trade counts or number of 

securities traded) as in the other models. Intuitively, given the specification of the models under 

investigation, the inclusion of average trade size in the regressions leads to a higher number for the 

relationship between the number of trades and trading activity. Also, the required proportionality for 

some stocks is achieved with more than one models, which highlights the impact of stock specific 

risk and other stock specific characteristics on the proportionality and correlations of the underlying 

variables. The extent to which these individual characteristics and correlations of the underlying 

variables affect the relationship between the number of trades and trading activity is very interesting 

for future research. 

6.2 Number of trades and trading activity for each day  

Based on the invariance model in (25), we now re-examine the 2 / 3 and 1/ 2  relationships between 

the trade counts and trading activity. Instead of averaging the observations across days, the 

underlying variables are now intraday averages of respective observations for 1-minute and 5-minutes 

intervals, as defined by equations (23) and (24). Table 7 displays results of OLS regressions for the 

number of trades regarding the 25 FTSE 100 stocks. Τhe constant term and coefficients here are also 

the same when testing for 2/3 and 1/2 proportionality, as the regression model for invariance does 

not change based on our theoretical model.. Thus, we report only the results that refer to the null 

hypothesis of 2 1/ 2   for brevity.  

Similar to the previous findings, the null hypothesis for 1 2 / 3    is rejected for all stocks in both 1-

minute and 5-minutes intervals at 1% significance level. All coefficients in 1-minute and most in 5-
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minute intervals do not confirm the 1/ 2  proportionality either. The null hypothesis for 2 1/ 2   is 

accepted only for three stocks (XTA, STAN and IMT) in 5-minute interval averages. Consistent with 

the previous scenario, the adjusted R-squared is higher for 5-minutes, while the constant term is 

significantly different from zero for all stocks. Upon inspection of Table 7, there is no apparent 

proportionality between trades counts and trading activity that will hold for all or the majority of the 

stocks in the sample, even when we calculate variables in low frequency 5-minutes that suffer from 

less estimation errors. However, certain group of stocks can predict different proportionalities. For 

instance, the predicted proportionality for some stocks could be 2 / 5 ( 0.4 ), while for others 4 / 9 (

0.444 ).  

The fact that the coefficients do not converge to a value that is constant across all stocks in the 

sample, when the underlying variables are intraday averages, is intriguing. A possible explanation is 

that innovations in the underlying variables for some stocks are more apparent when averaging 

intraday than across days and this may affect the estimated coefficients23. Our invariance model 

proposes a 
4

3




 proportionality between the number of trades and trading activity, where   is the 

intermediation multiplier and   denotes the percentage of volatility in prices that comes from order 

flow imbalances. For certain stocks, the number of intermediaries is high in some days and lower in 

some others for the same time interval. When averaging observations across days the impact of 

extreme number of intermediaries fades away. The same holds for the percentage of price volatility 

that comes from order flow imbalances. This smoothing in the values of  and   is less evident 

when the averages are estimated intraday, as any impact of extreme values will drive the daily average 

to decrease (increase). Consequently, the ratio /   is lower and the estimated proportionality 

becomes smaller. That would explain why in some stocks the estimated relationship is lower than the 

expected 1/2. Finally, some days in certain stocks include more intervals with zero trades and/or 

zero realised volatility than others, even for 5-minutes. Thus, estimated daily averages will be upward 

biased for the specific days, a fact that in turn leads to less accurate estimation of proportionality.  

Averaging observations across day yields more accurate estimations as the possibility of the same 

interval to have zero trades or realised volatility across days is smaller. 

                                                           
23 We have already discussed in the descriptive statistics that the standard deviation of the underlying 
variable s is higher when averaging  observation intraday.  
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Table 7- OLS Regression results for Model 1 (Invariance). Variables estimated as averages intraday. Stocks are 

grouped by market capitalization. c is  the constant term of the invariance model in (25). 
2 4 / 3    is the 

coefficient (i.e. proportionality) of the invariance model in (25) . 
2  refers to the null hypothesis of 1/2 

proportionality. Significance against 2/3 or 1/2 proportionality is tested with a Wald test. Numbers in bold signify 

that the null hypothesis of  1/2 proportionality is accepted.  ̅2 is the adjusted R-squared of the OLS regressions. * 

refers to 5%, ** to 1% and *** to 0.1% significance level.         

  1 minute  5 minutes 

Groups Stocks        c β2  ̅2         c β2  ̅2 

G
ro

u
p

 1
 

H
ig

h
e

st
 M

k
t 

C
a

p
 RDSA 

 0.8024*** 
(0.0405) 

 0.2510*** 
(0.0107) 

0.4243  0.6983*** 
(0.0717) 

 0.4035*** 
(0.0115) 

0.6186 

BP 
 2.1341*** 
(0.0466) 

 0.1367*** 
(0.0085) 

0.2568  3.0518*** 
(0.1178) 

 0.1720*** 
(0.0150) 

0.1486 

HSBA 
 1.4713*** 
(0.0737) 

 0.2626*** 
(0.0139) 

0.3210  1.1396*** 
(0.1262) 

 0.4195*** 
(0.0160) 

0.4782 

GSK 
 1.5134*** 
(0.0451) 

 0.2287*** 
(0.0095) 

0.4368  1.9049*** 
(0.0805) 

 0.3084*** 
(0.0112) 

0.5030 

VOD 
 2.1230*** 
(0.0405) 

 0.1521*** 
(0.0081) 

0.3212  2.7311*** 
(0.0989) 

 0.2235*** 
(0.0129) 

0.2840 

G
ro

u
p

 2
 

U
p

p
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

BLT 
 0.8058*** 
(0.0653) 

 0.3884*** 
(0.0121) 

0.5792  0.9229*** 
(0.1062) 

 0.4491*** 
(0.0131) 

0.6097 

BG 
 0.6593*** 
(0.0461) 

 0.3841*** 
(0.0105) 

0.6412  0.8326*** 
(0.0653) 

 0.4415*** 
(0.0095) 

0.7421 

XTA 
 0.2266*** 
(0.0628) 

 0.4966 
(0.0127) 

0.6717  0.4030*** 
(0.1066) 

 0.5078 
(0.0136) 

0.6483 

NG 
 0.6496*** 
(0.0362) 

 0.3973*** 
(0.0100) 

0.6769  0.9893*** 
(0.0476) 

0.4250*** 
(0.0081) 

0.7862 

STAN 
 0.4883*** 
(0.0466) 

 0.4251*** 
(0.0109) 

0.6701  0.4485*** 
(0.0660) 

 0.4959 
(0.0096) 

0.7792 

G
ro

u
p

 3
 

M
id

d
le

 M
k

t 
C

a
p

 

EMG 
 0.9996*** 
(0.0311) 

 0.2706*** 
(0.0086) 

0.5666  1.1155*** 
(0.0551) 

 0.3789*** 
(0.0091) 

0.6951 

OML 
 1.3401*** 
(0.0278) 

 0.1834*** 
(0.0095) 

0.3307  1.1517*** 
(0.0604) 

 0.3866*** 
(0.0112) 

0.6107 

WPP 
 1.0495*** 
(0.0493) 

 0.2774*** 
(0.0142) 

0.3371  0.7903*** 
(0.0731) 

 0.4535*** 
(0.0127) 

0.6300 

BLND 
 1.1633*** 
(0.0323) 

 0.2399*** 
(0.0096) 

0.4513  1.1979*** 
(0.0586) 

 0.3819*** 
(0.0101) 

0.6550 

RR 
 1.1035*** 
(0.0291) 

 0.2492*** 
(0.0088) 

0.5149  1.2206*** 
(0.0555) 

 0.3742*** 
(0.0098) 

0.6617 

G
ro

u
p

 4
 

L
o

w
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

CCL 
 0.7971*** 
(0.0306) 

 0.3315*** 
(0.0103) 

0.5777  0.8413*** 
(0.0453) 

 0.4283*** 
(0.0087) 

0.7638 

SMIN 
 0.9344*** 
(0.0233) 

 0.2658*** 
(0.0085) 

0.5673  0.9833*** 
(0.0378) 

 0.3920*** 
(0.0079) 

0.7676 

SHP 
 1.0163*** 
(0.0317) 

 0.2567*** 
(0.0098) 

0.4748  0.9821*** 
(0.0478) 

 0.3977*** 
(0.0090) 

0.7232 

IPR 
 0.9517*** 
(0.0288) 

 0.3009*** 
(0.0095) 

0.5702  0.9526*** 
(0.0476) 

 0.4266*** 
(0.0090) 

0.7507 

IMT 
 0.4586*** 
(0.0389) 

 0.4652*** 
(0.0111) 

0.7005  0.5400*** 
(0.0578) 

 0.5041 
(0.0097) 

0.7808 

G
ro

u
p

 5
 

L
o

w
e

st
 M

id
d

le
 M

k
t 

C
a

p
 

SVT 
 0.8086*** 
(0.0224) 

 0.3275*** 
(0.0086) 

0.6580  0.7835*** 
(0.0351) 

 0.4505*** 
(0.0076) 

0.8251 

CNE 
 0.9313*** 
(0.0283) 

 0.2560*** 
(0.0102) 

0.4554  0.9592*** 
(0.0442) 

 0.3907*** 
(0.0087) 

0.7272 

JMAT 
 0.7252*** 
(0.0256) 

 0.3490*** 
(0.0099) 

0.6227  0.6324*** 
(0.0379) 

 0.4724*** 
(0.0080) 

0.8216 

SGE 
 1.2418*** 
(0.0219) 

 0.1517*** 
(0.0088) 

0.2823  1.2513*** 
(0.0470) 

 0.3414*** 
(0.0104) 

0.5890 

REX 
 1.0235*** 
(0.0272) 

 0.2318*** 
(0.0108) 

0.3773  0.9686*** 
(0.0494) 

 0.4002*** 
(0.0108) 

0.6471 
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We also test the 2 / 3 and 1/ 2  relationships using the models of Clark (1973) and Ané and Geman 

(2000) when the  underlying variables are daily averages of respective observations for 1-minute and 

5-minutes intervals for each day in the sample. Tables 8 and 9 in Appendix II present the results 

ofOLS regressions for the number of trades regarding the 25 FTSE 100 stocks. The null hypothesis 

for 2 / 3  and 1/ 2  proportionalities is rejected for all stocks in both 1-minute and 5-minutes 

intervals, even if the data fits both models better than invariance model (higher adjusted R-squared). 

As we explained before, averaging observations intraday reveals certain problems in terms of 

measurement error and sampling variation which biases the estimated coefficients. It appears that the 

models of Clark (1973) and Ané and Geman (2000) are affected more than the invariance model. In 

a sense, the alleged proportionality between the number of trades and trading activity is more 

accurately predicted by the invariance model when we use intraday averages, at least for some stocks, 

compared to the other two models.     

6.3 Exclusion of market opening 

Figure 1 clearly reveals the presence of excess volatility in the first minutes of trading activity for all 

FTSE 100 stocks of our sample. This is consistent with Areal and Taylor (2002) who find that the 

FTSE-100 market is more volatile when the market opens. Also, we show that invariance model is 

more accurate for stocks with higher on average24 volatility than the alternative models. For these 

two reasons to examine the impact of volatility on proportionality, we re-run the OLS regressions for 

all three models in both 1-minute and five minute intervals. The estimated coefficients are presented 

in Table 10 for 1-minute and Table 11 for 5-minutes intervals. The underlying variables are averages 

of respective observations across all days in the sample. Upon inspection of both tables, it is obvious 

that the exclusion of extreme volatility improves the adjusted R-squared for all three models, more 

significantly for the invariance model. The model of Ané and Geman (2000) is more precise both in 

1-minute and 5-minutes intervals, while the invariance model does not confirm the null hypothesis 

for 2 1/ 2  , especially for the low frequency 5-minutes intervals. Also, the constant term for 

invariance model in 5-minutes interval is not significant from zero for the majority of stocks. The 

model of Clark (1973) continues to be accurate, though there is a shift in terms of stocks for which it 

can empirically predict the required proportionality.  

                                                           
24 The estimated averages for volatility are affected by the extreme values at the first five minutes of trading.  
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It is likely that as more traders enter the market, volatility becomes less extreme, as they adjust the 

number of trades and/or trading volume upon arrival of new information. A possible explanation 

for the deviations from invariance principle in the sample that is free of extreme volatility is that the 

trade size is less correlated with the returns volatility and number of trades and returns volatility 

becomes proportional to trading volume, either measured in number of trades or number of 

securities traded. This finding is different to what Andersen  et al. (2016) reports for the E-mini S&P 

500 future contracts market. In our sample the invariance principle holds only when extreme 

volatility is included which consequently indicates that market participants will adjust the trade size 

more actively when the prices are more volatile.  

The invariance model is the only to predict empirically 1/ 2  proportionality for OML stock, which is 

a stock for which both volatility and trade size are high. Excluding the first five minutes allows the 

invariance principle to manifest itself in the specific stock, for which possibly market participants 

actively change the trading size based on changes in returns volatility. For stocks with low number of 

trades and/or trading volume on average, there exists a proportionality of returns variance with both 

trading and number of trades, while for very high capitalisation stocks market participants seem to 

adjust only there number of trades based on returns volatility whenever new information arrives in 

the market. That explains why the model of Ané and Geman (2000) is more accurate than other 

models in high market capitalisation stocks.   

Generally, the model of Clark (1973) is more accurate in capturing the market microstructure 

properties in our sample, either when we include minutes with extreme volatility or not. This result is 

consistent with the findings of  Epps and Epps (1976), Westerfield (1977), Tauchen and Pitts (1983) 

and other similar papers that support the proportionality between the returns variance and the 

trading volume. Including minutes with extreme volatility, allows the invariance principle to manifest 

itself for the majority of stocks, especially for stocks with high on average volatility. In stocks for 

which both the invariance and Clark’s (1973) model are accurate, it is probable that market 

participants revise trade size upon arrival of information more through the trading volume than the 

number of trades. When extreme volatility is omitted, the model of Ané and Geman (2000) is more 

precise and invariance model becomes less accurate in predicting empirically 1/ 2  proportionality. 

This signifies a shift in trading behaviour when there is a great change in volatility. Also, this can be 

attributed to a change in the correlations between the underlying variables (i.e. between trade size 

and number of trades, trade size and return variance, return variance and trading volume and return    
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Table 10- OLS Regression results for 1-minute intervals excluding first 5 minutes of trading. Variables estimated as 

averages across days. Stocks are grouped by market capitalization. c is  the constant term and 
2  is the coefficient of the 

models in (30), (32) and (34), respectively. Significance against 1/2 proportionality is tested with a Wald test. Numbers in 

bold signify that the null hypothesis of 1/2 is accepted.  ̅2 is the adjusted R-squared of the OLS regressions. * refers to 

5%, ** to 1% and *** to 0.1% significance level.       

  1 minute 

  Invariance Clark Ane-Geman 

Groups Stocks-t        c β2  ̅2        c β2  ̅2        c       β2  ̅2 

G
ro

u
p

 1
 

H
ig

h
e

st
 M

k
t 

C
a

p
 RDSA 

-0.3302*** 
(0.0299) 

 0.5586*** 
(0.0080) 0.9059 

 6.2997*** 
(0.0494) 

 0.5413*** 
(0.0059) 0.9445 

3.7325*** 
(0.0215) 

 0.5020 
(0.0054) 0.8934 

BP 
 0.0291 
(0.0330) 

 0.5515*** 
(0.00637) 0.9370 

 7.8707*** 
(0.0414) 

 0.5342*** 
(0.0044) 0.9669 

4.8100*** 
(0.0173) 

 0.4909* 
(0.0043) 0.8904 

HSBA 
 0.1171*** 
(0.0312) 

 0.5352*** 
(0.0060) 0.9402 

 7.5159*** 
(0.0357) 

 0.5218*** 
(0.0040) 0.9712 

4.6249*** 
(0.0135) 

 0.48081*** 
(0.0036) 0.8763 

GSK 
-0.1747*** 
(0.03099) 

 0.6000*** 
(0.0067) 0.9414 

 7.0786*** 
(0.0416) 

 0.5587*** 
(0.0052) 0.9586 

4.3127*** 
(0.0161) 

 0.5208*** 
(0.0048) 0.8525 

VOD 
 0.5124*** 
(0.0411) 

 0.5013 
(0.0087) 0.8681 

 8.6806*** 
(0.0922) 

 0.4789** 
(0.0076) 0.8880 

5.5196*** 
(0.0428) 

 0.4417*** 
(0.0071) 0.8139 

G
ro

u
p
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U
p

p
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

BLT 
-0.2729*** 
(0.0298) 

 0.5938*** 
(0.0056) 0.9578 

 6.4882*** 
(0.0211) 

 0.5294*** 
(0.0031) 0.9832 

3.9755*** 
(0.0072) 

 0.5015 
(0.0032) 0.8956 

BG 
-0.0796* 
(0.0361) 

 0.5575*** 
(0.0082) 

0.9008 
 6.6586*** 
(0.0558) 

 0.5217** 
(0.0068) 

0.9222 
4.0845*** 
(0.0227) 

 0.4860* 
(0.0063) 

0.7873 

XTA 
 0.1989*** 
(0.0280) 

 0.5047 
(0.0057) 

0.9400 
 5.7912*** 
(0.0299) 

 0.4756*** 
(0.0045) 

0.9562 
3.6388*** 
(0.0097) 

 0.4405*** 
(0.0043) 

0.8491 

NG 
-0.0378 
(0.0294) 

 0.5881*** 
(0.0081) 

0.9132 
 7.1654*** 
(0.0680) 

 0.5389*** 
(0.0072) 

0.9172 
4.4562*** 
(0.0303) 

 0.5066*** 
(0.0065) 

0.7751 

STAN 
 0.1077*** 
(0.0315) 

 0.5205** 
(0.0074) 

0.9079 
 5.9362*** 
(0.0384) 

 0.4804*** 
(0.0051) 

0.9468 
3.7301*** 
(0.0160) 

 0.4505*** 
(0.0050) 

0.8266 

G
ro

u
p

 3
 

M
id

d
le

 M
k

t 
C

a
p

 

EMG 
 0.3057*** 
(0.0345) 

 0.4750* 
(0.0098) 0.8231 

 6.7118*** 
(0.0943) 

 0.4633*** 
(0.0092) 0.8344 

4.2092*** 
(0.0442) 

 0.4252*** 
(0.0083) 0.7546 

OML 
 0.9024*** 
(0.0368) 

 0.3509*** 
(0.0133) 0.5795 

 5.8308*** 
(0.1630) 

 0.3047*** 
(0.0125) 0.5405 

4.0468*** 
(0.0863) 

 0.2925*** 
(0.0115) 0.7023 

WPP 
 0.0973** 
(0.0311) 

 0.5649*** 
(0.0091) 0.8853 

 7.3083*** 
(0.0854) 

 0.5448*** 
(0.0088) 0.8840 

4.5051*** 
(0.0389) 

 0.5011 
(0.0078) 0.7826 

BLND 
 0.3643*** 
(0.0390) 

 0.4927 
(0.0119) 0.7719 

 6.4458*** 
(0.1052) 

 0.4953 
(0.0116) 0.7835 

4.0264*** 
(0.0482) 

 0.4494*** 
(0.0104) 0.6786 

RR 
 0.3026*** 
(0.0285) 

 0.5054 
(0.0089) 0.8655 

 6.9720*** 
(0.0943) 

 0.4825 
(0.0090) 0.8514 

4.4005*** 
(0.0441) 

 0.4463*** 
(0.0079) 0.7714 

G
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w
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r 
M

id
d

le
 M
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t 

C
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p
 

CCL 
 0.1721*** 
(0.0217) 

 0.5470*** 
(0.0074) 0.9151 

 5.7668*** 
(0.0549) 

 0.5321*** 
(0.0072) 0.9152 

3.5733*** 
(0.0247) 

 0.4862* 
(0.0064) 0.8655 

SMIN 
 0.2928*** 
(0.0281) 

 0.5120 
(0.0106) 0.8237 

 6.0978*** 
(0.1060) 

 0.4916 
(0.0117) 0.7784 

3.8634*** 
(0.0486) 

 0.4560*** 
(0.0099) 0.7477 

SHP 
 0.1495*** 
(0.0271) 

 0.5392*** 
(0.0086) 0.8870 

 6.7091 
(0.0886) 

 0.5508 
(0.0100) 0.8574 

4.0739*** 
(0.0374) 

 0.4965 
(0.0082) 0.8281 

IPR 
 0.2764*** 
(0.0321) 

 0.5333** 
(0.0108) 

0.8299 
 7.2996*** 
(0.1210) 

 0.5008 
(0.0111) 

0.8009 
4.6286*** 
(0.0578) 

 0.4675*** 
(0.0097) 

0.7180 

IMT 
 0.1385*** 
(0.0322) 

 0.5610*** 
(0.0092) 

0.8817 
 6.1635*** 
(0.0757) 

 0.5494*** 
(0.0102) 

0.8519 
3.7987*** 
(0.0294) 

 0.5030 
(0.0086) 

0.7459 

G
ro

u
p

 5
 

L
o

w
e

st
 M

id
d

le
 M

k
t 

C
a

p
 

SVT 
 0.1656*** 
(0.0268) 

 0.5827*** 
(0.0104) 

0.8615 
 6.0084*** 
(0.0820) 

 0.5191 
(0.0098) 

0.8489 
3.8607*** 
(0.0391) 

 0.4951 
(0.0087) 

0.7798 

CNE 
 0.3030*** 
(0.0285) 

 0.4899 
(0.0104) 

0.8147 
 5.1389*** 
(0.0921) 

 0.4775 
(0.0125) 

0.7424 
3.2581*** 
(0.0384) 

 0.4407*** 
(0.0104) 

0.7443 

JMAT 
 0.2191*** 
(0.0284) 

 0.5518*** 
(0.0111) 0.8302 

 5.4207*** 
(0.0877) 

 0.4716** 
(0.0108) 0.7895 

3.5567*** 
(0.0416) 

 0.4562*** 
(0.0097) 0.7670 

SGE 
 0.5156*** 
(0.0287) 

 0.4772 
(0.0124) 0.7466 

 6.7799*** 
(0.1534) 

 0.4350 
(0.0129) 0.6931 

4.4554*** 
(0.0785) 

 0.4121*** 
(0.0113) 0.7649 

REX 
 0.4285*** 
(0.0241) 

 0.4901 
(0.0100) 0.8264 

 6.4463*** 
(0.1427) 

 0.4511*** 
(0.0133) 0.6968 

4.2150*** 
(0.0653) 

 0.4286*** 
(0.0106) 0.7656 
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Table 11- OLS Regression results for 5-minutes intervals excluding first 5 minutes of trading. Variables estimated as 

averages across days. Stocks are grouped by market capitalization. c is  the constant term and  
2  is the coefficient of the 

models in (30), (32) and (34), respectively. Significance against 1/2 proportionality is tested with a Wald test. Numbers in 

bold signify that the null hypothesis of 1/2 is not rejected.  ̅2 is the adjusted R-squared of the OLS regressions. * refers to 

5%, ** to 1% and *** to 0.1% significance level.       

  5 minutes 

  Invariance Clark Ané and Geman 

Groups Stocks-t        c β2  ̅2        c β2  ̅2        c       β2  ̅2 

G
ro

u
p

 1
 

H
ig

h
e

st
 M

k
t 

C
a

p
 RDSA 

-0.4838*** 
(0.0865) 

 0.5975*** 
(0.0140) 0.9478 

 6.1726*** 
(0.0559) 

 0.5293** 
(0.0098) 0.9668 

 3.7039*** 
(0.0125) 

0.5018 
(0.0096) 0.9649 

BP 
-0.1543 
(0.1116) 

 0.5862*** 
(0.0143) 0.9438 

 7.7458*** 
(0.0659) 

 0.5258* 
(0.0103) 0.9629 

 4.7914*** 
(0.0106) 

0.4961 
(0.0100) 0.9607 

HSBA 
-0.0762 
(0.1111) 

 0.5769*** 
(0.0141) 0.9434 

 7.4140*** 
(0.0441) 

 0.5155* 
(0.0076) 0.9786 

 4.6194*** 
(0.0063) 

0.4891 
(0.0079) 0.9746 

GSK 
-0.2102 
(0.1136) 

 0.6069*** 
(0.0159) 0.9359 

 6.7349*** 
(0.0646) 

 0.5151 
(0.0126) 0.9435 

 4.2258*** 
(0.0088) 

0.4954 
(0.0120) 0.9445 

VOD 
 0.3833** 
(0.1328) 

 0.5397* 
(0.0176) 0.9037 

 8.7295 
(0.1120) 

 0.4854 
(0.0126) 0.9364 

 5.6062*** 
(0.0337) 

0.4572** 
(0.0127) 0.9284 

G
ro

u
p

 2
 

U
p

p
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

BLT 
-0.4245*** 
(0.1071) 

 0.6173*** 
(0.0133) 0.9560 

 6.3044*** 
(0.0236) 

 0.5036 
(0.0066) 0.9830 

 3.9306*** 
(0.0108) 

0.4920 
(0.0072) 0.9788 

BG 
 0.0707 
(0.1263) 

 0.5547*** 
(0.0184) 

0.9007 
 6.4190*** 
(0.0764) 

 0.4789 
(0.0142) 

0.9188 
 4.1007 
(0.0118) 

0.4574** 
(0.0139) 

0.9152 

XTA 
 0.2110* 
(0.1027) 

 0.5337* 
(0.0132) 

0.9425 
 5.7954 
(0.0296) 

 0.4684** 
(0.0094) 

0.9611 
 3.7317 
(0.0146) 

0.4450*** 
(0.0093) 

0.9581 

NG 
-0.0179 
(0.1153) 

 0.5987*** 
(0.0196) 

0.9030 
 6.9189*** 
(0.1170) 

 0.5055 
(0.0172) 

0.8966 
 4.4239*** 
(0.0325) 

0.4869 
(0.0160) 

0.9021 

STAN 
 0.1656 
(0.1014) 

 0.5397*** 
(0.0149) 

0.9295 
 5.9222*** 
(0.0459) 

 0.4645*** 
(0.0101) 

0.9548 
 3.8234 
(0.0073) 

0.4447*** 
(0.0102) 

0.9498 

G
ro

u
p

 3
 

M
id

d
le

 M
k

t 
C

a
p

 

EMG 
 0.2191 
(0.1127) 

 0.5326 
(0.0189) 0.8882 

 6.8546*** 
(0.1199) 

 0.4713 
(0.0162) 0.8944 

 4.3953*** 
(0.0366) 

0.4459*** 
(0.0153) 0.8946 

OML 
 0.5955*** 
(0.1081) 

 0.4972 
(0.0204) 0.8558 

 7.4402 
(0.1708) 

 0.4222*** 
(0.0170) 0.8599 

 4.9702*** 
(0.0715) 

0.4053*** 
(0.01631) 0.8604 

WPP 
 0.0728 
(0.1108) 

 0.5824*** 
(0.0193) 0.9014 

 7.0335*** 
(0.1247) 

 0.5211 
(0.0178) 0.8951 

 4.4355 
(0.0363) 

0.4909 
(0.0164) 0.8998 

BLND 
 0.2581 
(0.1383) 

 0.5491* 
(0.0240) 0.8390 

 6.4169*** 
(0.1243) 

 0.4937 
(0.0203) 0.8558 

 4.1115*** 
(0.0322) 

0.4645 
(0.0193) 0.8522 

RR 
 0.2292* 
(0.1039) 

 0.5537*** 
(0.0184) 0.9005 

 7.0399*** 
(0.1290) 

 0.4852 
(0.0169) 0.8923 

 4.5312*** 
(0.0418) 

0.4606* 
(0.0156) 0.8975 

G
ro

u
p

 4
 

L
o

w
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

CCL 
 0.0135 
(0.0775) 

 0.5916*** 
(0.0149) 0.9405 

 5.5935*** 
(0.0637) 

 0.5249 
(0.0129) 0.9428 

 3.5203*** 
(0.0169) 

 0.4953 
(0.0122) 0.9431 

SMIN 
 0.1179 
(0.0905 

 0.5800*** 
(0.0191) 0.9021 

 6.2985*** 
(0.1312) 

 0.5175 
(0.0196) 0.8749 

 3.9964*** 
(0.0429) 

 0.4880 
(0.0174) 0.8874 

SHP 
 0.0436 
(0.0843) 

 0.5807*** 
(0.0160) 0.9298 

 6.4478*** 
(0.1099) 

 0.5318 
(0.0173) 0.9044 

 4.0224*** 
(0.0306) 

 0.4966 
(0.0150) 0.9164 

IPR 
 0.1806 
(0.1121) 

 0.5767*** 
(0.0212) 

0.8804 
 7.2809*** 
(0.1612) 

 0.4982 
(0.0196) 

0.8652 
 4.6902*** 
(0.0579) 

 0.4755 
(0.0181) 

0.8732 

IMT 
 0.1526 
(0.1151) 

 0.5725*** 
(0.0195) 

0.8959 
 5.8228*** 
(0.0899) 

 0.5048 
(0.0195) 

0.8700 
 3.7242*** 
(0.0138) 

 0.4784 
(0.0175) 

0.8823 

G
ro

u
p

 5
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o

w
e

st
 M

id
d

le
 M

k
t 

C
a

p
 

SVT 
 0.0090 
(0.0912) 

 0.6238*** 
(0.0198) 

0.9083 
 6.0345*** 
(0.1051) 

 0.5259 
(0.0173) 

0.9024 
 3.8697*** 
(0.0343) 

 0.5065 
(0.0162) 

0.9073 

CNE 
 0.1314 
(0.0996) 

 0.5594** 
(0.0198) 

0.8889 
 5.3442*** 
(0.0955) 

 0.5170 
(0.0203) 

0.8667 
 3.3577*** 
(0.0204) 

 0.4808 
(0.0180) 

0.8770 

JMAT 
 0.0153 
(0.0958) 

 0.6085*** 
(0.0204) 0.8733 

 5.6321*** 
(0.1015) 

 0.4999 
(0.0180) 0.8846 

 3.6465*** 
(0.0308) 

 0.4858 
(0.0169) 0.8920 

SGE 
 0.1491 
(0.0871) 

 0.5977*** 
(0.0196) 0.9030 

 7.6752*** 
(0.1770) 

 0.5176 
(0.0187) 0.8847 

 4.9267*** 
(0.0749) 

 0.4937 
(0.0170) 0.8941 

REX 
 0.1993* 
(0.0816) 

 0.5769*** 
(0.0180) 0.9116 

 6.9497*** 
(0.1672) 

 0.5006 
(0.0201) 0.8612 

 4.4830*** 
(0.0625) 

 0.4777 
(0.0173) 0.8835 
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variance and number of trades). The dynamics of these variables are altered depending on the 

presence of extreme volatility. Finally, it is likely that stock specific characteristics and idiosyncratic 

risk play an important role in defining the relationship between the variables of trading activity. 

7. Conclusion 

In this paper we examine invariance principles of trading in stocks of FTSE 100 index. The findings 

are contrast somewhat with the analysis of Andersen  et al. (2016) for the E-mini S&P 500 future 

contract market. Although, there exists a proportionality between the number of trades and trading 

activity,  it differs from 2/3, while on certain criteria, model performance improves when trading 

activity is defined according to Clark (1973). Our analysis stems directly from market microstructure 

invariance and is based on a theoretical model that constitutes a generalised version of the model 

proposed by Kyle and Obizhaeva (2013). This extension of the initial market microstructure model 

aims at accommodating empirical phenomena in the stock market, as well as the way the trading is 

reported in the majority of the available databases. Also, this might provide a new and maybe a better 

way to measure liquidity based on how order flow imbalances impact prices in the stock market.    

It still remains an open question whether invariance applies or not in different time periods in the 

specific stock market or for the same period in other markets. Also, it is interesting to explore 

whether the idiosyncratic risk of each security plays an important role and accordingly alter the 

invariance principles. In the same respect, future research should focus on including other individual 

characteristics of securities in the estimation of invariance relationships, as well as correlations of the 

underlying variables. In this paper, we highlight the importance of volatility in the required 

proportionality; thus, further investigation of how different measures of realised volatility affect the 

relationship between trade counts and trading activity could be useful. Finally, given the level of 

fragmentation in the stock market, future papers should focus on how the introduction of different 

trading platforms affects the invariance principles if any.       
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Appendix I 

Proofs 

1. Relationship between expected bet and trading activity 

From the specification of bet volume we know that: 

2 2
V : V P V V P 

 
          (i) 

Also, we know that the trading volatility in currency units is given by: 

:P P       (ii)  

Combining equations (i) and (ii), we get the following expression:  

2 2
P V V P =  P V    

 
             (iii) 

Finally, taking into account the definitions of expected bet and trading activity from (iii) it can be 

easily inferred that: 

2
W : W




   

2. Expressing expected bet activity in terms of total volume V , price P , volatility   and 

expected trading activity W  

From the specification of expected bet activity we know that: 

W  P V     (i) 

If now we substitute for total volume V , price P  and volatility  , then 

W QBP N E        (ii) 

Finally, using the relationship between expected bet and trading activity, 



 

2 
 

2
W QB BP N 


      

3. Invariance relationship in terms of trading activity W and number of bets BN  

We have already proved that, 

2
W QB BP N 


      (i) 

We also know that,  

1 1 1 1

BQ I P NB



          (ii) 

Combining the two relationships,  

2
W P


  1I PBN    1 1    1

BN



    (iii) 

Finally, we solve for I , 

1

1

2
I :

B

W

N 






   

  

4. Invariance relationships in logs (proportionality between trading activity and number of 

bets and between trading activity and bet size) 

Invariance of bets states that,  

1: Q BI P N





     (i) 

If logarithms and expectations are applied then: 

{log } log
2 1

B B

s
E I p q n





    


 (ii) 
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where : logp P , : log QBq , 
2: logs  , : logB Bn N ,  : logB Bq E q  

Solving for Bq : 

{log } log
2 1

B B

s
q E I p n





    


 (iii) 

Also, from the relationship between bet and trading activity we know that,  

2 2 2
W : W W Q WB BP V P N

 
 

  
              (iv) 

Taking the logarithms in the above relationship, yields 

B

2
: : log

2 2

s s
p p n q w




 
        

 
 (v) 

where : logp P , log V  , 
2: logs  , : log Ww , : logB Bn N ,  : logBq E q  

 

If we substitute Bq  in (v) from (iii) we obtain the invariance expression for n : 

p {log }n E I p   log
2

s
 

1 2
B

s
n




 



1

2

2
: log

1 2
{log }: log   : (1 ) {log } (1 ) log log (1 )

1
c

c

w

n E I w n E I w



    
 

 

 
  

 

  
              

   

 

4
1

3

1 2

4
: (1 )

3
c

n c c w c w




 




 

      
   

where 1 : (1 ) {log }c E I    and 
2

2
: (1 ) log logc  



  
    

  
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Similarly, in order to obtain the invariance expression for Bq , we start from the expression in (ii). 

Given that    B Bn q ,  

 {log } log : log
2 1 2 1

B B B B

s s
E I p q n p q q

 
  

 
          

 
 (vi) 

Also, from (v) it is obvious that, 

2
: log

2

s
w p



 
    

 
 (vii) 

Substituting (vii) into (vi),    

2
{log }: log log

2 1 2

2
{log }: log log

2 1 1 1 1 2 1

1 1 2 1
{log }: log log

1 1 1 1 2 1

B B

B B

B

s s
E I p q w p q

s s
E I p q w p q

s
E I p q w




 

    


     

 


     

  
           

   

 
          

     

 
       

     

 

1

2

1 1 2 1
{log } log log

1 1 1 1 2 1

2
: (1 ) {log } (1 ) log log

2

B

B

c

c

s
q E I p w

s
q E I p w

 


     

    


 
      

     

   
          

  

 

4
1

3

1 2

4 1
: 1

2 3 2
B

c

s
q c c w p c w p s




 




 

    
             

    
 

where 1 : (1 ) {log }c E I   and 2

2
: (1 ) log logc   



 
     

 
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5. Invariance representation of (Clark (1973)) theory 

From the relationship between bet and trading activity we know that: 

2 2 2
W : W W Q WB BP V P N

 
 

  
              

This can be expressed in log terms as 

2
: log

2

s
p w



 
    

 
 (i) 

Clark (1973) implies that     s c c n q , so (i) can be written as: 

  

2 2 3 3
: log : log :

2 2 2

c

s
p s c w w c p s w c p s

 

    
                   

    
  (ii) 

 

If in (ii), we substitute s for  c n q , then 

3 1 3 3
: ( ) :

2 2 2 2
c

w c p c n q w p c n q             

3 3 3 3
:

2 2 2 2
w c n q n c w q           

2 3

3 2

n

j j j jn c w q u
 

    
 

  (iii) 

In order for (iii) to be comparable to the invariance model it needs to be transformed as follows: 

 

2 2 3 4 3

3 2 4 3 2 4

n n

j j j j j j jn c w q u c w q u
     

     

   
          

   
  

6. Invariance representation of (Ané and Geman (2000)) theory 

From the relationship between bet and trading activity we know that: 

2 2 2
W : W W Q WB BP V P N

 
 

  
              

This can be expressed in log terms as 
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2
: : log

2 2

s s
p p n q w



 
        

 
 (i) 

Ané and Geman (2000) implies that  s c n , so (i) can be written as: 

 

1 1 1 2
( ) : : log

2 2 2
p n q c n p n q c n w



 
            

 
 

2 3 1 1 2 3
: log : log

2 2 2 2

c

w p n q c w p c q n
 

   
               

   
 

3
:

2
w c q n     

2
:

3

n

j j j jn c w q u     
 (ii) 

In order for (ii) to be comparable to the invariance model it needs to be transformed as follows: 

 

2 2 4
:

3 2 2 3 2 2

n n

j j j j j j jn c w q u c w q u
     

     

   
          

   
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Appendix II 

Tables and Graphs 

Table 1- Stocks and their abbreviations 

Stock Abbreviation Stock Abbreviation 

ROYAL DUTCH SHELL PLC  RDSA BRITISH LAND CO PLC BLND 

BP PLC BP ROLLS-ROYCE HOLDINGS PLC RR 

HSBC HOLDINGS PLC HSBA CARNIVAL PLC CCL 

GLAXOSMITHKLINE PLC GSK SMITHS GROUP PLC SMIN 

VODAFONE VOD SHIRE PLC SHP 

BHP BILLITON PLC BLT INTERNATIONAL POWER PLC IPR 

BG GROUP PLC BG IMPERIAL TOBACCO GROUP PLC IMT 

XSTRATA XTA SEVERN TRENT PLC SVT 

NATIONAL GRID PLC NG CAIRN ENERGY PLC CNE 

STANDARD CHARTERED PLC STAN JOHNSON MATTHEY PLC JMAT 

MAN GROUP PLC EMG SAGE GROUP PLC SGE 

OLD MUTUAL PLC OML REXAM PLC REX 

WPP PLC WPP   

Source: Thompson Reuters Tick History 

 

  



 

8 
 

Table 2- Descriptive Statistics for each stock (1-minute averages across whole sample). The values of variables are estimated using equations (21) 

and (22). The numbers off brackets are means of variables calculated by aggregating their respective individual values for 3 years (for the whole 

sample) and then dividing them by 510 (the number of minutes during which the stocks are traded every day). The numbers in brackets are the 

standard deviations of the respective variables. The annualised volatility is calculated as follows: Annualised Volatility= 252 8.5 60   

 RDSA BP HSBA GSK VOD BLT BG XTA NG STAN EMG OML WPP 

Volatility (σ) 
Annualised volatility calculated from 
10s returns 

 0.2282 
(0.1081) 

 0.2733 
(0.1042) 

 0.2674 
(0.1181) 

 0.2500 
(0.0954) 

 0.2717 
(0.1946) 

 0.3801 
(0.1942) 

 0.3303 
(0.1112) 

 0.4192 
(0.1741) 

 0.2576 
(0.0832) 

 0.3585 
(0.1369) 

 0.3611 
(0.1440) 

 0.3984 
(0.1841) 

 0.3053 
(0.2037) 

Volume (V) 
Average no. of stocks per minute 
(1,000 shares) 

 11.752 
(6.0843) 

 115.28 
(53.277) 

 95.852 
(42.783) 

 32.903 
(15.759) 

 392.49 
(209.05) 

 39.260 
(33.824) 

 23.266 
(8.3435) 

 22.685 
(7.9899) 

 19.833 
(8.8957) 

 16.264 
(6.4193) 

 29.341 
(10.756) 

 57.0243 
(18.811) 

 18.468 
(6.8106) 

Trades (N) 
Average no. of trades per minute 

 8.3277 
(2.7266) 

 20.582 
(8.2781) 

 23.109 
(8.3199) 

 16.085 
(5.9233) 

 21.533 
(8.1503) 

 25.961 
(10.459) 

 13.166 
(3.9613) 

 21.484 
(6.0226) 

 9.4114 
(2.8117) 

 13.873 
(3.6279) 

 9.7146 
(2.4047) 

 8.7062 
(1.8875) 

 9.7874 
(2.9144) 

Trade Size (Q) 
Average no. of stocks per trade per 
minute (1000 shares) 

 1.6907 
(1.0428) 

 6.6921 
(3.0662) 

 5.0798 
(2.4897) 

 2.3540 
(1.1503) 

 24.870 
(28.459) 

 2.2633 
(9.8618) 

 2.2252 
(0.8406) 

 1.1959 
(0.4655) 

 2.5606 
(1.6331) 

 1.4646 
(0.9458) 

 3.7615 
(1.7925) 

 8.2803 
(6.5072) 

 2.3003 
(0.7826) 

Price (P)  
Average price per trade  per minute 

(£) 

 17.920 
(0.0469) 

 5.4004 
(0.0205) 

 7.6311 
(0.2852) 

 12.225 
(0.0289) 

 1.4500 
(0.0060) 

 14.552 
(0.0892) 

 9.8611 
(0.0903) 

 22.003 
(0.1312) 

 6.9470 
(0.0472) 

 14.149 
(0.0744) 

 4.3726 
(0.0374) 

1.1667 
(0.0197) 

 5.5870 
(0.0506) 

 BLND RR CCL SMIN SHP IPR IMT SVT CNE JMAT SGE REX 

Volatility (σ) 
Annualised volatility calculated from 
10s returns 

 0.3101 
(0.1222) 

 0.2843 
(0.1163) 

 0.2691 
(0.1181) 

 0.2568 
(0.0968) 

 0.2646 
(0.1013) 

 0.2685 
(0.1032) 

 0.2438 
(0.0827) 

 0.2455 
(0.0795) 

 0.2922 
(0.1483) 

 0.2717 
(0.1176) 

 0.2717 
(0.0946) 

 0.2720 
(0.1067) 

Volume (V) 
Average no. of stocks per minute 
(1,000 shares) 

 12.187 
(3.6733) 

 23.717 
(7.7029) 

 3.9799 
(1.8535) 

 6.9768 
(2.4251) 

 9.5054 
(3.3289) 

 22.297 
(6.8696) 

 7.6664 
(3.2553) 

 3.9121 
(1.1501) 

 3.1667 
(1.0310) 

 3.3789 
(0.9266) 

 19.921 
(7.1286) 

 11.702 
(3.8533) 

Trades (N) 
Average no. of trades per minute 

 9.7616 
(2.4025) 

 9.0196 
(2.4182) 

 8.2784 
(3.6188) 

 6.6033 
(1.5928) 

 8.0740 
(2.3895) 

 8.4717 
(2.1044) 

 11.063 
(2.9579) 

 6.6650 
(1.7494) 

 7.0265 
(1.5143) 

 6.7220 
(1.7167) 

 6.3263 
(1.5215) 

 6.3174 
(1.4498) 

Trade Size (Q) 
Average no. of stocks per trade per 
minute (1000 shares) 

 1.4438 
(0.4971) 

 3.1491 
(1.2815) 

 0.5487 
(0.2036)  

 1.3541 
(1.0968) 

 1.4175 
(0.7819) 

 3.2037 
(1.3903) 

 0.9447 
(0.9652) 

 0.6832 
(0.3458) 

 0.5616 
(0.3452) 

 0.5733 
(0.1818) 

 3.8689 
(2.7344) 

 2.2179 
(1.0495) 

Price (P)  
Average price per trade  per minute 

(£) 

 8.4667 
(0.0923) 

 4.2516 
(0.0449) 

 19.723 
(0.2121) 

 9.5537 
(0.1047) 

 10.072 
(0.1191) 

 3.5457 
(0.0425) 

 19.934 
(0.1399) 

 12.893 
(0.1463) 

 22.626 
(0.1524) 

 15.044 
(0.1153) 

 2.1269 
(0.0097) 

 3.9979 
(0.0455) 
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Table 3-Descriptive Statistics for each stock (daily averages across whole sample). The values of variables are estimated using equations (23) and 

(24). The numbers off brackets are means of the variables are calculated by aggregating their respective individual values for 3 years (for the whole 

sample) and then dividing them by 754 (the number of trading days in the sample). The numbers in brackets are the standard deviations of the 

respective variables. The annualised volatility is calculated as follows: Annualised Volatility= 252 8.5 60   

 RDSA BP HSBA GSK VOD BLT BG XTA NG STAN EMG OML WPP 

Volatility (σ) 
Annualised volatility calculated from 10s 
returns 

 0.2221 
(0.1123) 

 0.2795 
(0.1078) 

 0.2564 
(0.1280) 

 0.2471 
(0.0825) 

 0.2858 
(0.1902) 

 0.3755 
(0.1951) 

 0.3204 
(0.1320) 

 0.4168 
(0.2380) 

 0.2472 
(0.0950) 

0.3472 
(0.1813) 

 0.3513 
(0.1903) 

 0.3931 
(0.2743) 

 0.2914 
(0.2535) 

Volume (V) 
Average no. of stocks per minute (1,000 
shares) 

 12.039 
(6.4391) 

 115.58 
(6.1140) 

 96.264 
(51.863) 

 32.879 
(21.140) 

 392.98 
(284.57) 

 39.426 
(42.371) 

 23.363 
(11.197) 

 22.686 
(14.442) 

 19.714 
(12.619) 

16.243 
(10.247) 

 29.278 
(19.234) 

 57.058 
(26.054) 

 18.618 
(7.6505) 

Trades (N) 
Average no. of trades per minute 

 8.3725 
(2.7169) 

 20.611 
(8.3690) 

 23.170 
(11.805) 

 16.147 
(6.1196) 

 21.580 
(8.9659) 

 26.018 
(11.413) 

 13.185 
(4.6213) 

 21.451 
(9.2414) 

 9.4429 
(3.2430) 

13.785 
(5.5930) 

 9.6883 
(3.4068) 

 8.6645 
(2.7770) 

 9.7682 
(3.3392) 

Trade Size (Q) 
Average no. of stocks per trade per 
minute (1000 shares) 

 1.7382 
(1.5388) 

 6.6846 
(5.1291) 

 5.0926 
(4.0425) 

 2.3385 
(1.8097) 

 24.858 
(41.221) 

 2.2886 
(12.261) 

 2.2383 
(1.6735) 

 1.2046 
(0.7819) 

 2.5296 
(2.3256) 

1.4845 
(1.6176) 

 3.7978 
(3.3972) 

 8.3158 
(8.9451) 

 2.3374 
(1.5070) 

Price (P)  

Average price per trade  per minute (£) 

 17.943 
(1.7767) 

 5.4055 
(0.4840 

 7.6420 
(1.5825) 

 12.2217 
(1.1746) 

 1.4493 
(0.2020) 

 14.549 
(2.8697) 

 9.8569 
(1.7500) 

 22.017 
(12.704) 

 6.9026 
(0.8331) 

14.159 
(3.1602) 

 4.3650 
(1.4925) 

 1.1595 
(0.4464) 

 5.6493 
(1.3043) 

 BLND RR CCL SMIN SHP IPR IMT SVT CNE JMAT SGE REX 

Volatility (σ) 
Annualised volatility calculated from 10s 
returns 

 0.3034 
(0.1251) 

 0.2785 
(0.1382) 

 0.2656 
(0.1227) 

 0.2513 
(0.1434) 

 0.2619 
(0.0858) 

 0.2653 
(0.1217) 

 0.2372 
(0.0994) 

 0.2371 
(0.0952) 

 0.2815 
(0.1849) 

 0.2652 
(0.1353) 

 0.2682 
(0.1087) 

 0.2647 
(0.1228) 

Volume (V) 
Average no. of stocks per minute (1,000 
shares) 

 12.224 
(4.9445)  

 23.767 
(11.368) 

 4.0836 
(2.1167) 

 6.0903 
(5.1020) 
 

 9.3592 
(6.0597) 

 22.389 
(10.393) 

 7.6872 
(6.0251) 

 3.9323 
(1.9583) 
 

 3.2043 
(2.4005) 

 3.3740 
(1.8063) 
 

 19.920 
(11.562) 

 11.718 
(6.8156) 

Trades (N) 
Average no. of trades per minute 

 9.7631 
(3.0247) 

 9.0653 
(2.7551) 

 8.5643 
(2.7737) 

 6.6532 
(1.8085) 

 8.1079 
(2.5395) 

 8.4700 
(2.6518) 

 10.916 
(4.6128) 

 6.6712 
(2.1117) 

 7.0751 
(1.8987) 

 6.7524 
(1.9706) 

 6.3659 
(1.7958) 

 6.3342 
(1.9247) 

Trade Size (Q) 
Average no. of stocks per trade per 
minute (1000 shares) 

 1.4503 
(0.7662) 

 3.1446 
(2.3736) 

 0.5475 
(0.3578) 

 1.3283 
(1.8528) 

 1.3975 
(1.4847) 

 3.2291 
(2.3338) 

 0.9782 
(1.8122) 

 0.6923 
(0.6193) 

 0.5699 
(0.7016) 

 0.5682 
(0.3648) 

 3.8306 
(3.9040) 

 2.2174 
(1.8229) 

Price (P)  

Average price per trade  per minute (£) 

 8.4179 
(3.9719) 

 4.2618 
(0.8376) 

 19.807 
(3.8067) 

 9.5122 
(1.3484) 

 10.104 
(1.4441) 

 3.5111 
(0.8588) 

 19.934 
(3.1871) 

 12.775 
(1.8832) 

 22.599 
(5.5533) 

 14.967 
(3.1685) 

 2.1375 
(0.3061) 

 4.0070 
(1.0112) 
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Table 5-% percentage exclusions of 1-minute and 5-minute intervals based on the number of 

intervals that have zero number of trades and/or zero realised volatility  

Stocks % Exclusions (1 minute) % Exclusions (5 minutes) 
RDSA 28.33% 2.44% 

BP 28.70% 7.15% 

HSBA 21.30% 4.11% 

GSK 30.34% 5.87% 

VOD 24.21% 6.41% 

BLT 11.30% 0.96% 

BG 29.47% 4.80% 

XTA 8.18% 0.46% 

NG 42.81% 10.77% 

STAN 23.86% 3.32% 

EMG 32.28% 4.12% 

OML 38.56% 7.11% 

WPP 37.04% 7.25% 

BLND 30.00% 3.64% 

RR 32.95% 4.92% 

CCL 34.30% 3.37% 

SMIN 47.41% 9.58% 

SHP 45.61% 10.35% 

IPR 37.12% 5.03% 

IMT 30.99% 3.82% 

SVT 46.96% 9.21% 

CNE 37.83% 5.02% 

JMAT 41.83% 6.10% 

SGE 48.60% 11.35% 

REX 47.07% 10.21% 
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Figure 2- The figure shows averages across days for the volume tV  and  trade size Q t . The substantive graphs are divided in two groups. Group 

1 refer to stocks with the highest (extreme) average values for volume and trade size and Group 2 to the remaining stocks. 

Group 1 Group 2 
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Figure 4- The figure shows averages intraday for the volume dV   and  trade size Qd   for all stocks in the sample per day. The substantive graphs 

are divided in two groups. Group 1 refer to stocks with the highest (extreme) average values for volume and trade size and Group 2 to the 

remaining stocks. 

Group 1 Group 2 

  
  

  



 

13 
 

Table 8-OLS Regression results for Model 2 (Clark, 1973). Variables estimated as averages intraday. Stocks are 

grouped by market capitalization. c is  the constant term of Clark’s model specification in both (31) and (32). 
1  

is the coefficient of Clark’s model specification in (31), referring to a 2/3 proportionality. 
2  is the coefficient of 

Clark’s model specification in (32), referring to a 1/2 proportionality. Significance against 2/3 or 1/2 

proportionality is tested with a Wald test. Numbers in bold signify that the null hypothesis is accepted.  ̅2 is the 

adjusted R-squared of the OLS regressions. * refers to 5%, ** to 1% and *** to 0.1% significance level. 

  1 minute  5 minutes 

Groups Stocks-t        c       β1 β2  ̅2         c       β1 β2  ̅2 

G
ro

u
p

 1
 

H
ig

h
e

st
 M

k
t 

C
a

p
 RDSA 

 3.9609*** 
(0.0608) 

 0.3489*** 
(0.0095) 

 0.2617*** 
(0.0071) 

0.6411   5.0142*** 
(0.0337) 

 0.4321*** 
(0.0078) 

 0.3241*** 
(0.0059) 0.8030 

BP 
 6.1536*** 
(0.0851) 

 0.4665*** 
(0.0121) 

 0.3499*** 
(0.0091) 

0.6644   6.5541*** 
(0.0393) 

 0.4501*** 
(0.0081) 

 0.3376*** 
(0.0061) 0.8032 

HSBA 
 6.5183*** 
(0.0732) 

 0.5457*** 
(0.0108) 

 0.4093*** 
(0.0081) 

0.7709   6.5743*** 
(0.0340) 

 0.4925*** 
(0.0077) 

 0.3694*** 
(0.0058) 0.8444 

GSK 
 5.6859*** 
(0.0585) 

 0.5122*** 
(0.0096) 

 0.3842*** 
(0.0072) 

0.7895   5.8937*** 
(0.0277) 

 0.4661*** 
(0.0071) 

 0.3496*** 
(0.0054) 0.8499 

VOD 
 5.3810*** 
(0.0973) 

 0.2762*** 
(0.0106) 

 0.2071*** 
(0.0080) 

0.4717   7.1373*** 
(0.0539) 

 0.4076*** 
(0.0081) 

 0.3057*** 
(0.0061) 0.7723 

G
ro

u
p

 2
 

U
p

p
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

BLT 
 4.9495*** 
(0.0404) 

 0.4021*** 
(0.0078) 

 0.3016*** 
(0.0058) 

0.7798   5.6137*** 
(0.0178) 

 0.4075*** 
(0.0064) 

 0.3056*** 
(0.0048) 

0.8429 

BG 
 4.1371*** 
(0.0468) 

 0.2879*** 
(0.0074) 

 0.2159*** 
(0.0056) 

0.6669   5.1753*** 
(0.02734) 

 0.3281*** 
(0.0066) 

 0.2461*** 
(0.0050) 

0.7666 

XTA 
 4.1453*** 
(0.0741) 

 0.3002*** 
(0.0149) 

 0.2252*** 
(0.0112) 

0.3507   5.1171*** 
(0.0342) 

 0.3311*** 
(0.0139) 

 0.2483*** 
(0.0105) 

0.4280 

NG 
 4.8254*** 
(0.0781) 

 0.3860*** 
(0.0109) 

 0.2895*** 
(0.0082) 

0.6237   5.5495*** 
(0.0440) 

 0.4055*** 
(0.0085) 

 0.3041*** 
(0.0064) 

0.7513 

STAN 
 5.0605*** 
(0.0592) 

 0.4858*** 
(0.0103) 

 0.3644*** 
(0.0077) 

0.7465   5.4955*** 
(0.0268) 

 0.4933*** 
(0.0077) 

 0.3700*** 
(0.0058) 

0.8452 

G
ro

u
p

 3
 

M
id

d
le

 M
k

t 
C

a
p

 

EMG 
 4.7499*** 
(0.0834) 

 0.3639*** 
(0.0108) 

 0.2729*** 
(0.0081) 

0.6003   5.8852*** 
(0.0534) 

 0.4545*** 
(0.0096) 

 0.3409*** 
(0.0072) 0.7501 

OML 
 3.8276*** 
(0.1234) 

 0.2023*** 
(0.0126) 

 0.1517*** 
(0.0095) 

0.2536   6.5385*** 
(0.0894) 

 0.4443*** 
(0.0119) 

 0.3332*** 
(0.0089) 0.6510 

WPP 
 5.5469*** 
(0.0999) 

 0.4860*** 
(0.0137) 

 0.3645*** 
(0.0103) 

0.6264   6.2395*** 
(0.0473) 

 0.5442*** 
(0.0090) 

 0.4082*** 
(0.0067) 0.8307 

BLND 
 3.7137*** 
(0.0771) 

 0.2602*** 
(0.0113) 

 0.1952*** 
(0.0085) 

0.4125   5.2793*** 
(0.0496) 

 0.4125*** 
(0.0107) 

 0.3093*** 
(0.0080) 0.6646 

RR 
 4.8482*** 
(0.0960) 

 0.3735*** 
(0.0122) 

 0.2801*** 
(0.0091) 

0.5555   5.9468*** 
(0.0594) 

 0.4570*** 
(0.0103) 

 0.3427*** 
(0.0077) 0.7230 

G
ro

u
p

 4
 

L
o

w
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

CCL 
 4.1930*** 
(0.0706) 

 0.4305*** 
(0.0125) 

 0.3228*** 
(0.0094) 

0.6129   4.9386*** 
(0.0371) 

 0.5214*** 
(0.0101) 

 0.3911*** 
(0.0076) 0.7806 

SMIN 
 3.9431*** 
(0.0925) 

 0.3371*** 
(0.0135) 

 0.2528*** 
(0.0101) 

0.4516   5.0946*** 
(0.0563) 

 0.4498*** 
(0.0111) 

 0.3373*** 
(0.0083) 0.6857 

SHP 
 4.6189*** 
(0.1146) 

 0.4219*** 
(0.0173) 

 0.3164*** 
(0.0130) 

0.4412   5.7176*** 
(0.0587) 

 0.5571*** 
(0.0122) 

 0.4178*** 
(0.0092) 

0.7335 

IPR 
 4.7263*** 
(0.0911) 

 0.3525*** 
 (0.0111) 

 0.2644*** 
(0.0083) 

0.5722   5.9873*** 
(0.0575) 

 0.4547*** 
(0.0093) 

 0.3411*** 
(0.0070) 

0.7610 

IMT 
 4.9233*** 
(0.0594) 

 0.5090*** 
(0.0105) 

 0.3817*** 
(0.0079) 

0.7569   5.2806*** 
(0.0283) 

 0.5167*** 
(0.0080) 

 0.3875*** 
(0.0060) 

0.8471 

G
ro

u
p

 5
 

L
o

w
e

st
 M

id
d

le
 M

k
t 

C
a

p
 

SVT 
 3.7135*** 
(0.0698) 

 0.3264*** 
(0.0109) 

 0.2448*** 
(0.0082) 

0.5415   4.8332*** 
(0.0416) 

 0.4372*** 
(0.0090) 

 0.3279*** 
(0.0068) 

0.7582 

CNE 
 2.5370*** 
(0.0493) 

 0.1630*** 
(0.0088) 

 0.1222*** 
(0.0066) 

0.3147   3.8827*** 
(0.0333) 

 0.2739*** 
(0.0091) 

 0.2054*** 
(0.0068) 

0.5478 

JMAT 
4.0947*** 
(0.0802) 

0.4095*** 
(0.0132) 

 0.3071*** 
(0.0099) 

0.5620   4.9809*** 
(0.0428) 

 0.5128*** 
(0.0101) 

 0.3846*** 
(0.0075) 0.7756 

SGE 
4.3190*** 
(0.1203) 

0.3046*** 
(0.0135) 

 0.2285*** 
(0.0101) 

0.4044   6.2826*** 
(0.0727) 

 0.4948*** 
(0.0102) 

 0.3711*** 
(0.0076) 0.7584 

REX 
3.4196*** 
(0.1115) 

0.2272*** 
(0.0138) 

 0.1704*** 
(0.0104) 

0.2642   5.3380*** 
(0.0786) 

 0.4102*** 
(0.0125) 

 0.3077*** 
(0.0094) 

0.5877 
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Table 9-OLS Regression results for Model 3 (Ané and Geman, 2000). Variables estimated as averages intraday. 

Stocks are grouped by market capitalization. c is  the constant term of Ané and Geman’s model specification in 

both (33) and (34). 
1  is the coefficient of Ané and Geman’s model specification in (33), referring to a 2/3 

proportionality. 
2  is the coefficient of Ané and Geman’s model specification in (34), referring to a 1/2 

proportionality. Significance against 2/3 or 1/2 proportionality is tested with a Wald test. Numbers in bold 

signify that the null hypothesis is accepted.  ̅2 is the adjusted R-squared of the OLS regressions. * refers to 5%, 

** to 1% and *** to 0.1% significance level.   

  1 minute  5 minutes 

Groups Stocks-t        c       β1 β2  ̅2         c       β1 β2  ̅2 

G
ro

u
p

 1
 

H
ig

h
e

st
 M

k
t 

C
a

p
 RDSA 

 2.9830*** 
(0.0271) 

 0.4146*** 
(0.0089) 

 0.3110*** 
(0.0067) 

0.7420   3.5650*** 
(0.0078) 

 0.4947*** 
(0.0071) 

 0.3711*** 
(0.0053) 0.8660 

BP 
 3.9360*** 
(0.0335) 

 0.3683*** 
(0.0114) 

 0.2762*** 
(0.0086) 

0.5809   4.6917*** 
(0.0090) 

 0.5054*** 
(0.0107) 

 0.3790*** 
(0.0080) 0.7476 

HSBA 
 4.3023*** 
(0.0340) 

 0.5315*** 
(0.0122) 

 0.3986*** 
(0.0091) 

0.7176   4.5887*** 
(0.0069) 

 0.5588*** 
(0.0085) 

 0.4191*** 
(0.0064) 

0.8514 

GSK 
 3.7621*** 
(0.0224) 

 0.4761*** 
(0.0089) 

 0.3571*** 
(0.0067) 

0.7928   4.1930*** 
(0.0046) 

 0.5015*** 
(0.0067) 

 0.3762** 
(0.0050) 

0.8827 

VOD 
 3.9718*** 
(0.0445) 

 0.2490*** 
(0.0098) 

 0.1867*** 
(0.0074) 

0.4590   5.2321*** 
(0.0198) 

 0.4235*** 
(0.0098) 

 0.3176*** 
(0.0073) 

0.7147 

G
ro

u
p

 2
 

U
p

p
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

BLT 
 3.6972*** 
(0.0113) 

 0.4962*** 
 (0.0064) 

 0.3722*** 
(0.0048) 

0.8886   4.0734*** 
(0.0069) 

 0.5002*** 
(0.0055) 

 0.3752*** 
(0.0041) 

0.9165 

BG 
 3.3614*** 
(0.0197) 

 0.3774*** 
(0.0070) 

 0.2831*** 
(0.0053) 

0.7932   4.0178*** 
(0.0056) 

 0.4076*** 
(0.0059) 

 0.3057*** 
(0.0044) 0.8635 

XTA 
 3.3214*** 
(0.0265) 

 0.3980*** 
(0.0148) 

 0.2985*** 
(0.0111) 

0.4896   3.9136*** 
(0.0187) 

 0.4161*** 
(0.0141) 

 0.3121*** 
(0.0106) 

0.5359 

NG 
 3.7013*** 
(0.0343) 

 0.4574*** 
(0.0096) 

 0.3431*** 
(0.0072) 

0.7527   4.1415*** 
(0.0116) 

 0.4561*** 
(0.0071) 

 0.3421*** 
(0.0053) 0.8448 

STAN 
 3.6084*** 
(0.0203) 

 0.5518*** 
(0.0083) 

 0.4139*** 
(0.0062) 

0.8554   3.8179*** 
(0.0050) 

 0.5473*** 
(0.0062) 

 0.4105*** 
(0.0047) 0.9119 

G
ro

u
p

 3
 

M
id

d
le

 M
k

t 
C

a
p

 

EMG 
 3.3654*** 
(0.0389) 

 0.3576*** 
(0.0097) 

 0.2682*** 
(0.0073) 

0.6429   4.1551*** 
(0.0164) 

 0.4604*** 
(0.0087) 

 0.3453*** 
(0.0065) 0.7883 

OML 
 3.0310*** 
(0.0653) 

 0.2113*** 
(0.0116) 

 0.1585*** 
(0.0087) 

0.3037   4.6774*** 
(0.0373) 

 0.4555*** 
(0.0113) 

 0.3417*** 
(0.0084) 0.6850 

WPP 
 3.7986*** 
(0.0525) 

 0.4832*** 
(0.0140) 

 0.3624*** 
(0.0105) 

0.6113   4.2860*** 
(0.0154) 

 0.5671*** 
(0.0090) 

 0.4253*** 
(0.0068) 0.8398 

BLND 
 2.8545*** 
(0.0376) 

 0.2641*** 
(0.0108) 

 0.1980*** 
(0.0081) 

0.4446   3.8641*** 
(0.0142) 

 0.4158*** 
(0.0103) 

 0.3118*** 
(0.0077) 0.6844 

RR 
 3.4806*** 
(0.0439) 

 0.3769*** 
(0.0104) 

 0.2827*** 
(0.0078) 

0.6335   4.2727*** 
(0.0182) 

 0.4863*** 
(0.0089) 

 0.3647*** 
(0.0067) 

0.7996 

G
ro

u
p

 4
 

L
o

w
e

r 
M

id
d

le
 M

k
t 

C
a

p
 

CCL 
 3.0882*** 
(0.0301) 

 0.4744*** 
(0.0106) 

 0.3558*** 
(0.0080) 

0.7262   3.4220*** 
(0.0079) 

 0.5346*** 
(0.0081) 

 0.4009*** 
(0.0061) 

0.8514 

SMIN 
 3.0971*** 
(0.0403) 

 0.3973*** 
(0.0109) 

 0.2979*** 
(0.0082) 

0.6378   3.7045*** 
(0.0161) 

 0.4900*** 
(0.0084) 

 0.3675*** 
(0.0063) 

0.8180 

SHP 
 3.3801*** 
(0.0458) 

 0.4623*** 
(0.0135) 

 0.3468*** 
(0.0101) 

0.6079   3.8712*** 
(0.0142) 

 0.5649*** 
(0.0090) 

 0.4237*** 
(0.0068) 

0.8385 

IPR 
 3.5003*** 
(0.0460) 

 0.3711*** 
(0.0102) 

 0.2784*** 
(0.0077) 

0.6362   4.3095*** 
(0.0206) 

 0.4760*** 
(0.0084) 

 0.3570*** 
(0.0063) 0.8103 

IMT 
 3.5251*** 
(0.0237) 

 0.5631*** 
(0.0089) 

 0.4223*** 
(0.0067) 

0.8411   3.6883*** 
(0.0062) 

 0.5543*** 
(0.0070) 

 0.4157*** 
(0.0053) 

0.8922 

G
ro

u
p

 5
 

L
o

w
e

st
 M

id
d

le
 M

k
t 

C
a

p
 

SVT 
 2.9086*** 
(0.0333) 

 0.3742*** 
(0.0097) 

 0.2807*** 
(0.0073) 

0.6648   3.5592*** 
(0.0130) 

 0.4739*** 
(0.0076) 

 0.3554*** 
(0.0057) 0.8373 

CNE 
 2.3158*** 
(0.0277) 

 0.2445*** 
(0.0096) 

 0.1834*** 
(0.0072) 

0.4602   3.1587*** 
(0.0094) 

 0.3545*** 
(0.0086) 

 0.2659*** 
(0.0065) 0.6929 

JMAT 
 3.1999*** 
(0.0338) 

 0.4966*** 
(0.0104) 

 0.3725*** 
(0.0078) 

0.7501   3.5213*** 
(0.0106) 

 0.5552*** 
(0.0074) 

 0.4164*** 
(0.0056) 0.8818 

SGE 
 2.9861*** 
(0.0616) 

 0.2685*** 
(0.0119) 

 0.2014*** 
(0.0089) 

0.4044   4.3694*** 
(0.0312) 

 0.4919*** 
(0.0094) 

 0.3689*** 
(0.0070) 0.7857 

REX 
 2.7793*** 
(0.0603) 

 0.2611*** 
(0.0131) 

 0.1958*** 
(0.0098) 

0.3442   3.9425*** 
(0.0318) 

 0.4389*** 
(0.0116) 

 0.3292*** 
(0.0087) 0.6559 

 


